

eloProg

Konfigurierbares Sicherheitssystem

Handbuch (Original)

INHALT

1	EINLEITUNG	1-1
1.1	Inhalt dieses Handbuchs	1-1
1.2	Wichtige Hinweise zur Sicherheit	1-1
1.3	Liste der Abkürzungen und Symbole	1-2
1.4	Liste der geltenden Bestimmungen	1-2
2	ALLGEMEINE BESCHREIBUNG	2-1
3	LIEFERUMFANG	3-1
4	INSTALLATION	4-1
41	Mechanische Befestigung	4-1
42	Berechnung des Sicherheitsabstands einer an eloProg angeschlossenen BWS	4-2
4.3	Elektrische Anschlüsse	4-2
4.3.1	Hinweise zu den Anschlusskabeln	4-3
4.3.2	USB-Eingang	4-4
4.3.3	eloProg Speicherstick (350EPS)	4-4
	Funktion MEHRFACHLADEN	4-5
	RESTORE-Funktion (Wiederherstellen)	4-5
4.3.4	Anschlüsse Encoder mit RJ45-Steckverbinder (485EPS1, 485EPS2) 4	-11
4.3.5	Beispiel für den Anschluss des eloProg-Systems an die Maschinensteuerung 4	-15
4.4	Checkliste nach der Installation 4	-15
5	FUNKTIONSDIAGRAMM	5-1
6	BESCHREIBUNG DER SIGNALE	6-1
6.1	Eingänge	6-1
6.1.1	MAŠTER ENABLE	6-1
6.1.2	NODE SEL	6-1
6.1.3	Initiator-Eingang Proximity für 485EPS2N	6-2
	Konfiguration mit überlappenden Initiator-Signalen	6-2
6.1.4	REST_FBK	6-3
6.2	Ausgänge	6-4
6.2.1	OUT STATUS	6-4
6.2.2	OUT TEST	6-4
6.2.3	OSSD (Module 485EPB, 485EPE08A02, 485EPA02, 485EPA04)	6-5
6.2.4	OSSD (Modul 485EPA00S08)	6-6
6.2.5	Relaismodule (485EPR02, 485EPR04, 485EPR04S00B, 485EPR04S08B)	6-7
	Charakteristiken des Ausgangsstromkreises	6-1 60
	Modul 485EPR02/485EPR04 Interne Kontakte	0-0
	Funktionsdiagramm des an das Modul 485EPR02/485EPR04 angeschlossenen	0-9
		6-9
7		71
7 1		7 1
7.1	Aligemeine Systemeigenschalten	7-1
7.1.1	Allgemeine Daten	7 1
7.1.2	Cehäuse	7_2
714	Basismodul 485FPB	7_2
715	Fin-/Ausgangsmodul 485EPE08A02	7-2
7.1.6	Eingangsmodule 485EPE08 - 485EPE12 - 485EPE16	7-3
7.1.7	Ausgangsmodule 485EPA02 - 485EPA04	7-3
7.1.8	Ausgangsmodule 485EPA00S08 - 485EPA00S16	7-3
7.1.9	Ausgangsmodule 485EPR02 - 485EPR04	7-3
7.1.10	Ausgangsmodul 485EPA02S08	7-4
7.1.11	Drehzahlüberwachungsmodule 485EPS2N - 485EPS1 - 485EPS2	7-5
7.1.12	Modul 485EPR04S00B - 485EPR04S08B	7-6

7.2	Mechanische Abmessungen	
7.3	Signalisierungen	
7.3.1	Basismodul 485EPB	
7.3.2	Ein-/Ausgangsmodul 485EPE08A02	
7.3.3	Eingangsmodul 485EPE08	7-10
7.3.4	Eingangsmodul 485EPE12	7-11
7.3.5	Eingangsmodul 485EPE16	7-12
7.3.6	Ausgangsmodul 485EPA02	7-13
7.3.7	Ausgangsmodul 485EPA04	7-14
7.3.8	Modul 485EPR04S00B	7-15
7.3.9	Modul 485EPR04S08B	7-16
7.3.10	Modul 485EPA00S08	
7.3.11	Modul 485EPA00S16	7-18
7.3.12	Module 485EPS2N, 485EPS1, 485EPS2	
7 3 13	Relaisausgangsmodule 485FPR02/485FPR04	7-20
7 3 14		7-21
74	Fehlerdiagnose	7-22
741	Basismodul 485EPB	7-22
742	Fin-/Ausgangsmodul 485EPE08002	7_23
7/3	Eingangemodul 185EPE08	
7.4.5	Eingangsmodul 485EDE12	
7.4.4	Eingangsmodul 485EDE16	
7.4.5		
7.4.0		
7.4.7		
7.4.8		
7.4.9		
7.4.10		
7.4.11	Module 485EP52N, 485EP51, 485EP52	
7.4.12		
8	KONFIGURATIONSSOFTWARE	8-1
8.1	Installation der Software	
8.1.1	Hardwarevoraussetzungen für den PC	
8.1.2	Softwarevoraussetzungen für den PC	8-1
8.1.3	Wie die Konfigurationssoftware installiert wird	8-1
8.1.4	Allgemeines	8-2
8.1.5	Standard-Symbolleiste	8-3
8.1.6	Text-Symbolleiste	8-4
8.1.7	Erstellen eines neuen Projekts	8-4
8.1.8	Konfiguration ändern (Zusammensetzung der verschiedenen Module)	8-5
8.1.9	Benutzerparameter ändern	8-5
8.1.10	Symbolleisten Objekte - Operatoren - Konfiguration	8-5
8.1.11	Erstellen des Diagramms (Konfiguration)	8-6
8.1.12	Projektbeispiel	8-8
	Validierung des Projekts	8-8
	Report des Projekts	8-9
	Verbindung mit eloProg	8-10
	Konfiguration an eloProg senden	8-10
	Herunterladen einer Konfiguration (Projekt) vom eloProg Basismodul	8-10
	LOG der Konfigurationen	8-11
	Systemaufbau	8-11
	Trennen des Systems	8-12
	MONITOR (Status der I/O in Echtzeit - Text)	8-12
	MONITOR (Status der I/O in Echtzeit - Grafik)	8-13

8.1.13	Kennwortschutz	8-14				
	Kennwort Ebene 1					
	Kennwort Ebene 2	8-14				
	Kennwortänderung	8-15				
8.1.14	System-Test	8-15				
8.2		8-17				
8.2.1	Ausgänge OUTPUT	8-17				
	OSSD (Halbleiter-Sicherheitsausgänge)	8-17				
	SINGLE OSSD (Halbleiter-Sicherheitsausgange)	8-18				
	FIELDBUS PROBE (Feidbussensor)	8-21				
		8-21				
8.2.2		8-25				
	E-STOP (Not-Halt, ein- und zweikanalig)	8-25				
	E-GATE (Bewegliche trennende Schutzeinrichtungen, zweikanalig)	8-27				
	SINGLE E-GATE (Bewegliche trennende Schutzeinrichtungen, einkanalig)	8-29				
		8-30				
	ENABLE (Schlusselschalter)	8-31				
	ESPE (BWS: Sicherheitslichtschranke/-Laserscanner)	8-33				
	FOUTSWITCH (Sicherneitspedal/-Fuisschalter)	8-34				
	MOD-SEL (Betriebsartenwanischalter)	8-30				
	PHOTOCELL (Sicherheitslichtschränke)	8-31				
	I WO-HAND (Zweinandsteuerung)	8-38				
	NEIWORK_IN	8-39				
	SENSOR (LICHISCHRANKE, INITIATOR)	8-40				
		8-41				
	SWITCH (Schalter)	8-42				
	ENABLING GRIP SWITCH (ZUSUMMSChaller)	0.45				
	SOUD STATE DEVICE (Inechanischer Sicherheiterenzer mit Helbleitereusgängen)	0-40				
	SOLID STATE DEVICE (Sichemeitssensor mit Haldieiterausgangen)	0-4/				
		0-40				
		0-40 0 10				
		0-40 0 10				
0.2	Funktionshaustoing dag Type SPEED MONITOPING	0-40 0 /0				
0.5	SPEED CONTROL (Coschwindigkoitskontrollo)	0-49				
	WINDOW SPEED CONTROL (Geschwindigkeitskontrolle in Messfonster)	0-49				
	STAND STILL (Stillstandskontrolle)	8-56				
	STAND STILL (Suilstandskontrolle)	8 50				
831	CIARD STEL AND SPEED CONTROL (Geschwindigkeits- und Stillstandskonttolle)	8 63				
0.J.1 8 /	Operatoren (Verarbeitungsbausteine)	8-72				
0. 4 8 / 1		8_72				
0.4.1	AND (IND): IND-Funktionsbaustein	8_72				
	NAND (NICHT-LIND): LIND-Funktionsbaustein mit invertiertem Ausgang	8_72				
	NOT (NICHT): Inverter-Funktionsbaustein	8_73				
	OR (ODER): ODER-Funktionsbaustein	8_73				
	NOR (NICHT-ODER): ODER-Funktionsbaustein mit invertiertem Ausgang	8_73				
	XOR (EXCLUSIV-ODER): Antivalenz-Funktionsbaustein	8-74				
	XNOR (EXCLUSIV-NICHT-ODER): Äquivalenz-Funktionshaustein	8_74				
		8-75				
	MIII TIPI EXER [.] Selektionsschalter	8-76				
842	Speicherbausteine	8-77				
J. 1.	D FLIP FLOP: Daten-FlipFlop, taktflankengesteuert	8-77				
	SR FLIP FLOP: Set-Reset-Flipflop	8-78				
	USER RESTART MANUAL: Wiederanlaufsperre. Start mit steigender Flanke	8-78				
	USER RESTART MONITORED: Wiederanlaufsperre. Start mit fallender Flanke	8-79				
	MACRO RESTART MANUAL (max. 16 Stück Restart-Funktionsbausteine)	8-79				

8.4.3	Zählerbausteine	8-81
.	COUNTER: Zähler, auf- und abwärts	8-81
8.4.4	TIMER-Operatoren	8-83
	CLOCKING: Taktgenerator, steuerbar	8-83
	MONOSTABLE: Monoflop mit Mindestzeit-Pegel	8-84
	MONOSTABLE_B: Monoflop klassisch (Ausgang ohne Zeitverlängerung)	8-85
	PASSING MAKE CONTACT: Maximalzeit (Impulszeit-Begrenzer)	8-87
	DELAY: Ein-/Ausschaltverzögerung mit Kompensation Signalunterbrechung	8-88
.	DELAY LINE: Ausschaltverzögerung klassisch	8-89
8.4.5	Muting	8-90
8.4.6	MUTING-Funktionsbausteine	8-90
	MUTING "Concurrent): 4-Sensor-Muting (doppelt-parallel)	8-90
	MUTING "L" (L-Anordnung): 2-Sensor-Einseiten-Muting (parallel)	8-92
	MUTING "Seq" (Sequential): 4-Sensor-Muting (seriell)	8-93
	MUTING "I" (I-Anordnung): 2-Sensor-Zweiseiten-Muting (parallel)	8-95
0 5	MUTING OVERRIDE	8-96
8.5	FUNKTIONSDAUSTEINE VERSChiedenes	8-98
	SERIAL OUTPUT: Senelle Obertragung von Statussignalen	0-90
		0-100
	INTERPAGE IN/UUT	0-100
		0-100
0 5 1	IERMIINATOR	> 100
0.3.1	Verzögerter Ausgang mit manuellem Betrieb	2 107
		2 102
		2 100
	Verwaltung Grafische Simulation	2_111
852	eloProg-Fehlercodes	R_117
0.0.2		0.4
J		. 9-1
10	EG-KONFORMITATSERKLARUNG	10-1

1 EINLEITUNG

1.1 Inhalt dieses Handbuchs

Dieses Handbuch enthält die Anweisungen zur Verwendung des programmierbaren Sicherheitsmoduls eloProg und seiner Erweiterungsmodule (als "SLAVE" bezeichnet) und umfasst im Wesentlichen Folgendes:

• Beschreibung des Systems

- Installationsmethode
- Anschlüsse
- Signalisierungen
- Diagnostik
- Verwendung der Konfigurationssoftware

1.2 Wichtige Hinweise zur Sicherheit

Warnung

Dieses Symbol stellt einen wichtigen Hinweis **zur Personensicherheit** dar. Die mangelnde Einhaltung kann zu einem sehr hohen Risiko für das betroffene Personal führen.

Hinweis

Dieses Symbol weist auf einen wichtigen Hinweis hin.

Warnung

• eloProg erreicht das folgende Sicherheitsniveau: SIL 3, SILCL 3, PLe und Kat. 4, gemäß den geltenden Bestimmungen.

Dennoch sind die endgültigen Sicherheitseinstufungen SIL und PL des Geräts von der Anzahl der Sicherheitsbauteile, ihren Parametern und den hergestellten Anschlüssen abhängig, die sich aus der Risikoanalyse ergeben.

- Lesen Sie aufmerksam Kap. 1.4 Liste der geltenden Bestimmungen auf Seite 1-2.
- Führen Sie eine genaue Risikoanalyse durch, um das für Ihr Gerät notwendige Sicherheitsniveau festzustellen, indem Sie sich auf alle geltenden Bestimmungen beziehen.
- Die Programmierung/Konfiguration von eloProg erfolgt vom Installateur oder Bediener unter einer ausschließlichen Verantwortung
- Diese Programmierung/Konfiguration muss in Übereinstimmung mit der Risikoanalyse der Anwendung und allen für sie geltenden Bestimmungen erfolgen.
- Nach der Programmierung/Konfiguration und Installation von eloProg und der daran angeschlossenen Geräte muss ein erschöpfender Sicherheitstest der Anwendung erfolgen (siehe *Kap. 8.1.14 System-Test auf Seite 8-15*).
- elobau haftet nicht für diese Vorgänge und eventuelle sich aus diesen ergebenden Risiken.
- Für eine korrekte Verwendung der an eloProg angeschlossenen Geräte im Rahmen der jeweiligen Verwendung siehe Bedienungsanleitung und eventuell die entsprechenden Produkt- und/oder Gerätebestimmungen.
- Der Kunde muss eine umfassende Kontrolle des Systems sicherstellen, wenn neue Sicherheitsbauteile zum System selbst hinzugefügt (siehe Kap. 8.1.14 System-Test auf Seite 8-15).
- Überprüfen Sie, ob die Temperatur der Räume, in denen das System installiert wird, mit den auf dem Produkt und in den technischen Daten angegebenen Betriebsparametern hinsichtlich der Temperatur vereinbar ist.
- Bei sicherheitsrelevanten Problemen wenden Sie sich, sollte dies erforderlich sein, an die für Sicherheitsangelegenheiten zuständigen Behörden Ihres Landes oder an die zuständigen Industrieverbände.

1.3 Liste der Abkürzungen und Symbole

350EPS	=	eloProg Speicherstick für Basismodul 485EPB (Zubehör)
350EPT	=	eloProg T-Verteiler
350EPKS	=	eloProg Konfigurationssoftware
OSSD	=	Output Signal Switching Device: Sicherer Halbleiterausgang (Sicherheitsausgang)
DC	=	Diagnostic Coverage: Diagnose-Deckungsgrad
MTTF _d	=	Mean Time to Dangerous Failure
PL	=	Performance Level
PFH _d	=	Probability of a dangerous failure per Hour
SIL	=	Safety Integrity Level
SILCL	=	Safety Integrity Level Claim Limit
SW	=	Software

1.4 Liste der geltenden Bestimmungen

eloProg wurde in Übereinstimmung mit den folgenden europäischen Richtlinien ausgelegt:

- 2006/42/EG "Maschinenrichtlinie"
- 2004/108/EG "Richtlinie über die elektromagnetische Verträglichkeit"
- 2006/95/EG "Niederspannungsrichtlinie"

Es werden die folgenden Bestimmungen eingehalten:

CEI EN 61131-2 (2007)	Speicherprogrammierbare Steuerungen, Teil 2: Technische Eigenschaften und Prüfungen der Geräte
ISO 13489-1 (2008)	Sicherheit von Maschinen: Mit der Sicherheit verbundene Teile der Steuersysteme. Allgemeine Grundsätze für die Planung
EN 61496-1 (2013)	Sicherheit von Maschinen: Berührungslos wirkende Schutzeinrichtungen, Teil 1: Allgemeine Voraussetzungen und Tests.
IEC 61508-1 (2010)	Funktionelle Sicherheit sicherheitsbezogener elektrischer/elektronischer/programmierbarer elektronischer Systeme: Allgemeine Voraussetzungen.
IEC 61508-2 (2010)	Funktionelle Sicherheit sicherheitsbezogener elektrischer/elektronischer/programmierbarer elektronischer Systeme: Voraussetzungen sicherheitsbezogener elektrischer/elektronischer/programmierbarer elektronischer Systeme.
IEC 61508-3 (2010)	Funktionelle Sicherheit sicherheitsbezogener elektrischer/elektronischer/programmierbarer elektronischer Systeme: Softwarevoraussetzungen
IEC 61784-3 (2008)	Übertragung von digitalen Daten für Messung und Kontrolle: sicherheitsbezogene Profile für die Kommunikation in Industrienetzwerken
IEC 62061 (2013)	Sicherheit von Maschinen: Funktionale Sicherheit sicherheitsbezogener programmierbarer elektrischer und elektronischer Steuerungssysteme
EN 81-20	Sicherheitsvorschriften für den Bau und die Installation von Aufzügen. Aufzüge für den Transport von Perso- nen und Sachen. Teil 20: Aufzüge für Personen und von Personen begleiteten Sachen.
EN 81-50	Sicherheitsvorschriften für den Bau und die Installation von Aufzügen. Prüfungen und Kontrollen. Teil 50: Pla- nungsregeln, Berechnungen, Prüfungen und Kontrollen der Aufzugbauteile.

Tab. 1-1 Liste der geltenden Bestimmungen

2 ALLGEMEINE BESCHREIBUNG

eloProg ist ein modulares Sicherheitsauswertegerät, bestehend aus einem Basismodul **(485EPB)** und verschiedenen Erweiterungen, welche über einen proprietären Bus angeschlossen werden.

Das Basismodul, das über eine graphische Benutzeroberfläche konfiguriert werden kann, verfügt über 8 Sicherheitseingänge und 2 unabhängige, programmierbare zweikanalige Sicherheitsausgänge. Das Basismodul kann auch eigenständig (stand-alone) betrieben werden.

Hinweis Zur Vorfügung o

Zur Verfügung stehen:

- Ein-/Ausgangserweiterungen: 485EPE08A02
- Eingangserweiterungen: 485EPE08, 485EPE12, 485EPE16, 485EPS2N, 485EPS1x und 485EPS2x
- Ausgangserweiterungen: 485EPA02 und 485EPA04 und 485EPA02S08
- Ausgangsmodule mit Sicherheitsrelais mit zwangsgeführten Kontakten: 485EPR02 und 485EPR04, 485EPR04S00B und 485EPR04S08B
- Ausgangsmodule mit nicht-sicheren Status-Ausgängen (Meldeausgänge): 485EPAS00S08, 485EPAS00S16
- Feldbusmodule: 485EPFPD (PROFIBUS DP), 485EPFCO (CanOpen), 485EPFDN (DeviceNet), 485EPFEI (Ethernet IP), 485EPFEI2 (Ethernet IP 2-fach), 485EPFMR (Modbus RTU), 485EPFMT (Modbus TCP), 485EPFPN2 (Profinet 2-fach), 485EPFEC (EtherCat), 485EPFUB (USB-Schnittstellenmodul)
- Bustransfermodule: 485EPT1, 485EPT2

An eloProg können folgende Sensoren angeschlossen werden:

Optoelektronische Sensoren (Lichtschranken, Laserscanner usw.), mechanische Schalter, Not-Halt-Taster, Trittmatten, Zweihandsteuerungen, Zustimmschalter, Initiatoren.

Das System darf nur aus einem Master (Basismodul 485EPB) und max. 14 elektronischen Erweiterungen, davon nicht mehr als 4 desselben Typs bestehen.

Das System kann bei 14 Erweiterungen über 128 Eingänge, 16 Zweikanal-Sicherheitsausgänge und 16 Statusausgänge verfügen. Das MASTER-Modul und seine SLAVE-Module kommunizieren über den 5-Wege-Bus, der auf der Rückseite jedes Moduls installiert ist.

Außerdem stehen 8 Eingänge und 16 Ausgänge in Verbindung mit den verschiedenen Feldbusmodulen zur Verfügung. Diese ermöglichen bidirektionales Melden und Steuern.

Die Erweiterungsmodule des eloProg Systems **485EPE08**, **485EPE16**, **485EPE12** ermöglichen dem System, die Anzahl der Inputs zu erhöhen und damit die Anzahl der anschließbaren externen Geräte. **485EPE12** bietet außerdem auch 8 TEST-Ausgänge.

Die Erweiterungsmodule des eloProg Systems **485EPA02**, **485EPA04** bieten dem System jeweils 2 und 4 statische OSSD-Sicherheitsausgänge zur Steuerung der **eloProg** nachgeschalteten Geräte.

485EPE08A02 verfügt über 8 Eingänge und 4 OSSD-Sicherheitsausgänge.

Das Erweiterungsmodul 485EPA02S08 hat 4 Hochlast-OSSD-Sicherheitsausgänge, jeder mit 2A belastbar. Diese können zweikanalig oder als Single-OSSD genutzt werden.

Weiterhin sind 4 Feedbackeingänge und 8 programmierbare Statusausgänge vorhanden.

Die Erweiterungsmodule des eloProg Systems **485EPR02**, **485EPR04** bieten dem System jeweils 2 und 4 Sicherheitsrelais mit geführten Schließerkontakten und dem jeweiligen Feedback der externen Relais (Öffnerkontakt).

Die Erweiterungsmodule der Reihe **485EPF** ermöglichen den Anschluss an die gängigsten industriellen Feldbusse zu Diagnose- und Datenübertragungszwecken. **485EPFEI**, **485EPFPN2** und **485EPFEC** sind mit einem Ethernet-Anschluss ausgestattet.

485EPFUB ermöglicht den Anschluss an Geräte mit USB-Anschluss.

Die Bustransfermodule **485EPT1**, **485EPT2** ermöglichen den Anschluss von 485EPB mit anderen Slave-Modulen, die dezentral, in einem Abstand von max. 50 m platziert werden. Durch Verwendung eines abgeschirmten Kabels werden die Bustransfermodule im gewünschten Abstand verbunden.

Mit den Drehzahlüberwachungsmodulen **485EPS2N**, **485EPS1x**, **485EPS2x** können folgende Funktionen überwacht werden:

- Stillstand, maximale Drehzahl, Drehzahlbereich;
- Drehrichtung

Es können bis zu 4 Schaltpunkte zur Drehzahlbegrenzung je Eingang (Achse) frei konfiguriert werden.

Jedes Modul hat 2 konfigurierbare Ausgänge und kann somit bis zu 2 unabhängige Achsen steuern.

Die Relaismodule **485EPR04S00B und 485EPR04S08B** verfügen über 4 unabhängige Sicherheitsrelaisausgänge und 4 Eingänge für die externen Rückführ-Kontakte (EDM).

Für die Ausgänge sind 2 Einstellungen möglich (Konfiguration über elobau Safety Designer):

- 2 doppelte Anschlusskontakte (2 Schließerkontakte pro Ausgang mit 2 Rückführkreiseingängen vorhanden).
- 4 unabhängige einzelne Anschlusskontakte (1 Schließerkontakt pro Ausgang mit 1 Rückführkreiseingang vorhanden).

Das Modul 485EPR04S08B verfügt zusätzlich über 8 programmierbare Statusausgänge.

Die nicht-sicherheitsgerichteten Ausgabemodule 485EPAS00S08 und 485EPA00S16 verfügen über 8 bzw. 16 programmierbare Statusausgänge.

Mit der Konfigurationssoftware von **eloProg** kann unter Verwendung von logischen Verknüpfungen und Sicherheitsfunktionen wie Muting, Timer, Zählern usw. komplexe Logik erstellt werden.

Dies alles erfolgt über eine einfache und intuitive graphische Benutzeroberfläche.

Die auf dem PC erstellte Konfiguration wird an das Modul 485EPB über USB-Anschluss übertragen. Die Datei wird im 485EPB gespeichert und kann auch auf dem proprietären Speicherstick 350EPS (Zubehör) gespeichert werden. Somit ist eine schnelle Übertragung der Konfiguration auf weitere Module 485EPB einfach möglich.

Hinweis

Das eloProg System ist für das höchste Sicherheitsniveau zertifiziert, das in den einschlägigen Industriesicherheitsnormen vorgesehen ist (SIL 3, SILCL 3, PLe und Kat. 4).

3 LIEFERUMFANG

Das Basismodul 485EPB wird mit folgendem Zubehör geliefert:

- CD-ROM mit kostenloser Konfigurationssoftware und Handbuch im PDF-Format

Hinweis

Der rückseitige Busanschluss (T-Verteiler 350EPT) und der Speicherstick (350EPS) können separat als Zubehör bestellt werden.

Die Erweiterungsmodule werden mit folgendem Zubehör geliefert:

- Rückseitiger Busanschluss (T-Verteiler 350EPT),

(in den Relaisausgangsmodulen 485EPR02 und 485EPR04 nicht enthalten, da diese nur über die Anschlussklemmen angeschlossen werden).

Hinweis

Für die Installation eines Erweiterungsmoduls ist sowohl der im Lieferumfang enthaltene Busanschluss (T-Verteiler) als auch ein weiterer für den Anschluss an das Basismodul 485EPB erforderlich (ausgenommen sind Relaisausgangsmodule).

4 INSTALLATION

4.1 Mechanische Befestigung

Die Module werden auf einer 35 mm DIN-Schiene (ISO 5022) wie folgt befestigt:

- 1. Die Anzahl T-Verteiler zusammenstecken, die der Anzahl der zu montierenden Module entspricht.
- 2. Auf der 35 mm DIN-Schiene (ISO 5022) die zusammengesteckten T-Verteiler befestigen (zuerst oben).
- 3. Dann die Module an der Schiene befestigen und die Kontaktvorrichtung unten am Modul auf den entsprechenden T-Verteiler setzen. Das Modul vorsichtig eindrücken, bis es spürbar einrastet.
- 4. Um das Modul zu entfernen, muss unter Verwendung eines Schraubenziehers der Sperrhaken auf der Rückseite des Moduls nach unten gezogen, das Modul von unten angehoben und nach oben gezogen werden.

Fig. 4-1 Mechanische Befestigung

4.2 Berechnung des Sicherheitsabstands einer an eloProg angeschlossenen BWS

Alle an eloProg angeschlossenen berührungslos wirkenden Schutzeinrichtungen (BWS) müssen in einem Abstand positioniert werden, der dem Mindestsicherheitsabstand **S** entspricht, so dass die Gefahrenstelle erst nach Stoppen der gefährlichen Bewegung der Maschine erreicht werden kann.

Warnung

- In der europäischen Norm: ISO 13855:2010- (EN 999:2008) Sicherheit von Maschinen. Anordnung von Schutzeinrichtungen im Hinblick auf Annäherungsgeschwindigkeiten von Körperteilen* sind Formeln für die Berechnung des korrekten Sicherheitsabstands enthalten.
- Beachten Sie auch das Installationshandbuch jedes einzelnen Geräts, um spezifische Informationen hinsichtlich der Anordnung zu erhalten.
- Es ist zu beachten, dass die Gesamtreaktionszeit des Systems von folgenden Faktoren abhängt:

Reaktionszeit eloProg + Reaktionszeit BWS + Reaktionszeit Maschine (die von der Maschine ab dem Moment, in dem das Stoppsignal übertragen wird, benötigte Zeit, um die gefährlichen Bewegungen zu stoppen).

* "Beschreibt die Methoden, die die Planer zur Berechnung der Mindestsicherheitsabstände von einer Gefahr für spezifische Sicherheitsvorrichtungen verwenden können, insbesondere für berührungslos wirkende Schutzeinrichtungen (z.B. Lichtschranken), druckempfindliche Matten oder Trittflächen und Zweihandsteuerungen. Enthält eine Regel zur Bestimmung der Anordnung der Sicherheitsvorrichtungen basierend auf der Annäherungsgeschwindigkeit und der Haltezeit der Maschine, die angemessen extrapoliert werden kann, so dass auch die verriegelten Türen mit einbezogen werden, ohne die Schutzeinrichtung zu verriegeln."

4.3 Elektrische Anschlüsse

Die Module sind mit Anschlussklemmen für die elektrischen Anschlüsse versehen. Jedes Modul hat 8, 16 oder 24 Klemmen.

Jedes Modul verfügt außerdem über einen rückseitigen Anschluss (für die Kommunikation mit dem Master und den anderen Erweiterungsmodulen).

485EPR02 und 485EPR04 werden nur über die Anschlussklemmen angeschlossen.

Klemmenanzugsdrehmoment: 0,6 - 0,7 Nm

Fig. 4-2 Elektrische Anschlüsse

Warnung

- Die Sicherheitsmodule in einem Gehäuse installieren, das mindestens IP54 entspricht.
- Verbinden Sie die Module im spannungslosen Zustand.
- Die Module müssen mit einer Versorgungsspannung von 24 VDC ± 20 % gespeist werden (Schutzkleinspannung gemäß EN 60204-1 (Kap. 6.4)).
- eloProg nicht als Versorgung für externe Geräte verwenden.
- Der Erdungsanschluss (0 VDC) muss an allen Komponenten des Systems derselbe sein.

4.3.1 Hinweise zu den Anschlusskabeln

Hinweis

- Leiterquerschnitt: AWG 12÷30 (starr/flexibel) (UL).
- Verwenden Sie nur Kupferleiter mit 60 °C/75 °C.
- Es wird empfohlen, die Spannungsversorgung der Sicherheitsmodule von anderen Geräten (Elektromotoren, Inverter, Frequenzumwandler) oder sonstigen Störquellen getrennt zu halten.
- Für Anschlüsse mit einer Länge von über 50 m Kabel mit einem Querschnitt von mindestens 1 mm² verwenden.

Im Anschluss werden die Anschlüsse jedes einzelnen Moduls aufgeführt:

Basismodul (Master) 485EPB					
KLEMME	SIGNAL	ТҮР	BESCHREIBUNG	FUNKTIONSWEISE	
1	24 VDC	-	Versorgung 24 VDC	-	
2	MASTER_ENABLE1	Input	MASTER ENABLE	Input (" <i>Typ B"</i> gemäß EN 61131-2:2007)	
3	MASTER_ENABLE2	Input		Input (" <i>Typ B</i> " gemäß EN 61131-2:2007)	
4	GND	-	Versorgung 0 VDC	-	
5	OSSD1_A	Output	Sicherbeitsausgang 1	Aktiver PNP	
6	OSSD1_B	Output	Sichemensausgang 1	Aktiver PNP	
7	REST_FBK1	Input	Rückführkreis/Restart 1	Input gemäß EN 61131-2:2007	
8	OUT_STATUS1	Output	Statusausgang 1	Aktiver PNP	
9	OSSD2_A	Output	Cick or heite success 2	Aktiver PNP	
10	OSSD2_B	Output		Aktiver PNP	
11	REST_FBK2	Input	Rückführkreis/Restart 2	Input gemäß EN 61131-2:2007	
12	OUT_STATUS2	Output	Statusausgang 2	Aktiver PNP	
13	OUT_TEST1	Output	Ausgang mit Kurzschlusserkennung	Aktiver PNP	
14	OUT_TEST2	Output	Ausgang mit Kurzschlusserkennung	Aktiver PNP	
15	OUT_TEST3	Output	Ausgang mit Kurzschlusserkennung	Aktiver PNP	
16	OUT_TEST4	Output	Ausgang mit Kurzschlusserkennung	Aktiver PNP	
17	INPUT1	Input	Sicherer digitaler Eingang 1	Input gemäß EN 61131-2:2007	
18	INPUT2	Input	Sicherer digitaler Eingang 2	Input gemäß EN 61131-2:2007	
19	INPUT3	Input	Sicherer digitaler Eingang 3	Input gemäß EN 61131-2:2007	
20	INPUT4	Input	Sicherer digitaler Eingang 4	Input gemäß EN 61131-2:2007	
21	INPUT5	Input	Sicherer digitaler Eingang 5	Input gemäß EN 61131-2:2007	
22	INPUT6	Input	Sicherer digitaler Eingang 6	Input gemäß EN 61131-2:2007	
23	INPUT7	Input	Sicherer digitaler Eingang 7	Input gemäß EN 61131-2:2007	
24	INPUT8	Input	Sicherer digitaler Eingang 8	Input gemäß EN 61131-2:2007	

Tab. 4-1 Anschlüsse - Basismodul 485EPB

4.3.2 USB-Eingang

Das Basismodul 485EPB ist mit einem USB 2.0-Anschluss ausgestattet, um den Anschluss an den PC zu ermöglichen, auf dem sich die Konfigurationssoftware befindet (siehe *Fig. 4-3*). Ein USB-Kabel (3 m lang) ist als Zubehör erhältlich (350EPU).

Fig. 4-3 USB 2.0 - Anschluss

4.3.3 eloProg Speicherstick (350EPS)

Beim Basismodul 485EPB besteht die Möglichkeit, einen Backup-Speicher (optional) zu installieren, auf dem die Konfigurationsparameter der SW gespeichert werden können.

Der Schreibvorgang auf den Speicherstick erfolgt **jedes Mal**, wenn ein neues Projekt vom PC an das Basismodul übertragen wird.

Hinweis

Den Speicherstick nur anschließen/entfernen, wenn das Basismodul nicht an Spannung ist.

Der Steckplatz für den Speicherstick befindet sich auf der Rückseite des Basismoduls (Richtung wie in *Fig. 4-4 eloProg Speicherstick 350EPS*).

1 Etikett mit technischen Daten

2 350EPS-Speicherstick

Fig. 4-4 eloProg Speicherstick 350EPS

Funktion MEHRFACHLADEN

Um die Konfiguration von Basismodulen ohne PC auszuführen, muss die Konfiguration auf einen Speicherstick gespeichert werden. Diese wird dann verwendet, um die Daten auf die Basismodule zu laden, die konfiguriert werden sollen.

Damit ein Projekt auf einen Speicherstick geschrieben wird, ist es erforderlich, die Konfiguration (bei eingestecktem Speicherstick) vom PC an das Basismodul zu senden. Nur Einstecken eines unbeschriebenen Speichersticks in ein bereits konfiguriertes Basismodul reicht (auch wenn ein Boot-Vorgang durchgeführt wird) nicht aus.

Hinweis

Ist die im Speicherstick enthaltene Datei nicht mit der im Basismodul identisch, wird die im Basismodul gespeicherte Konfiguration überschrieben und endgültig gelöscht! Achtung: Alle zuvor im Basismodul enthaltenen Daten gehen verloren!

RESTORE-Funktion (Wiederherstellen)

Falls das Basismodul defekt ist, kann es gegen ein neues ausgetauscht werden. Da alle Konfigurationen zuvor auf dem Speicherstick gespeichert wurden, muss nur der Speicherstick in das neue Basismodul eingesetzt und das eloprog System wieder eingeschaltet werden. Der Einschaltvorgang lädt automatisch die Backup-Konfiguration. Auf diese Weise werden Arbeitsunterbrechungen auf ein Minimum reduziert.

Hinweis

Die LADE- und RESTORE-Funktionen können über die SW deaktiviert werden (siehe *Fig.* 7-23 *Modul 485EPR04S08B auf Seite 7-29*).

Hinweis

Die Erweiterungsmodule müssen vor Verwendung bei der Installation adressiert werden (siehe *Kap. 6.1.2 NODE SEL auf Seite 6-1*).

Warnung

Bei jeder Verwendung des Speichersticks muss geprüft werden, ob die ausgewählte Konfiguration die ist, die für das System erstellt wurde. Dann erneut eine vollständige Funktionsprüfung des Systems bestehend aus eloProg und allen daran angeschlossenen Geräten durchführen (siehe *Kap. 8.1.14 System-Test auf Seite 8-15*).

Ein-/Ausgangsmodul 485EPE08A02					
KLEMME	SIGNAL	ТҮР	BESCHREIBUNG	FUNKTIONSWEISE	
1	24VDC	-	Versorgung 24 VDC	-	
2	NODE_SEL 0	Input	Knotonouowahl	Input (,,,Typ B" gemäß EN 61131-2:2007)	
3	NODE_SEL 1	Input	Kiloteriauswarii	Input (,,,Typ B" gemäß EN 61131-2:2007)	
4	GND	-	Versorgung 0 VDC	-	
5	OSSD1_A	Output	Sichorhoiteausgang 1	Aktiver PNP	
6	OSSD1_B	Output	Sichemeitsausgang 1	Aktiver PNP	
7	REST_FBK1	Input	Rückführkreis/Restart 1	Input gemäß EN 61131-2:2007	
8	OUT_STATUS1	Output	Statusausgang 1	Aktiver PNP	
9	OSSD2_A	Output	Sicharhaiteausgang 2	Aktiver PNP	
10	OSSD2_B	Output	Sichemeitsausgang 2	Aktiver PNP	
11	REST_FBK2	Input	Rückführkreis/Restart 2	Input gemäß EN 61131-2:2007	
12	OUT_STATUS2	Output	Statusausgang 2	Aktiver PNP	
13	OUT_TEST1	Output	Ausgang mit Kurzschlusserkennung	Aktiver PNP	
14	OUT_TEST2	Output	Ausgang mit Kurzschlusserkennung	Aktiver PNP	
15	OUT_TEST3	Output	Ausgang mit Kurzschlusserkennung	Aktiver PNP	
16	OUT_TEST4	Output	Ausgang mit Kurzschlusserkennung	Aktiver PNP	
17	INPUT1	Input	Sicherer digitaler Eingang 1	Input gemäß EN 61131-2:2007	
18	INPUT2	Input	Sicherer digitaler Eingang 2	Input gemäß EN 61131-2:2007	
19	INPUT3	Input	Sicherer digitaler Eingang 3	Input gemäß EN 61131-2:2007	
20	INPUT4	Input	Sicherer digitaler Eingang 4	Input gemäß EN 61131-2:2007	
21	INPUT5	Input	Sicherer digitaler Eingang 5	Input gemäß EN 61131-2:2007	
22	INPUT6	Input	Sicherer digitaler Eingang 6	Input gemäß EN 61131-2:2007	
23	INPUT7	Input	Sicherer digitaler Eingang 7	Input gemäß EN 61131-2:2007	
24	INPUT8	Input	Sicherer digitaler Eingang 8	Input gemäß EN 61131-2:2007	

Tab. 4-2 Anschlüsse Ein-/Ausgangsmodul 485EPE08A02

Eingangsmodul 485EPE08					
KLEMME	SIGNAL	ТҮР	BESCHREIBUNG	FUNKTIONSWEISE	
1	24VDC	-	Versorgung 24 VDC	-	
2	NODE_SEL 0	Input	Kastasausushi	Input (,,,Typ B" gemäß EN 61131-2:2007)	
3	NODE_SEL 1	Input	Kilotenauswani	Input (,,,Typ B" gemäß EN 61131-2:2007)	
4	GND	-	Versorgung 0 VDC	-	
5	INPUT1	Input	Sicherer digitaler Eingang 1	Input gemäß EN 61131-2:2007	
6	INPUT2	Input	Sicherer digitaler Eingang 2	Input gemäß EN 61131-2:2007	
7	INPUT3	Input	Sicherer digitaler Eingang 3	Input gemäß EN 61131-2:2007	
8	INPUT4	Input	Sicherer digitaler Eingang 4	Input gemäß EN 61131-2:2007	
9	OUT_TEST1	Output	Ausgang mit Kurzschlusserkennung	Aktiver PNP	
10	OUT_TEST2	Output	Ausgang mit Kurzschlusserkennung	Aktiver PNP	
11	OUT_TEST3	Output	Ausgang mit Kurzschlusserkennung	Aktiver PNP	
12	OUT_TEST4	Output	Ausgang mit Kurzschlusserkennung	Aktiver PNP	
13	INPUT5	Input	Sicherer digitaler Eingang 5	Input gemäß EN 61131-2:2007	
14	INPUT6	Input	Sicherer digitaler Eingang 6	Input gemäß EN 61131-2:2007	
15	INPUT7	Input	Sicherer digitaler Eingang 7	Input gemäß EN 61131-2:2007	
16	INPUT8	Input	Sicherer digitaler Eingang 8	Input gemäß EN 61131-2:2007	

Tab. 4-3 Anschlüsse Eingangsmodul 485EPE08

Modul 485EPE12					
KLEMME	SIGNAL	ТҮР	BESCHREIBUNG	FUNKTIONSWEISE	
1	24VDC	-	Versorgung 24 VDC	-	
2	NODE_SEL 0	Input	Knotonauswahl	Input (,,,Typ B" gemäß EN 61131-2:2007)	
3	NODE_SEL 1	Input	Khotenauswani	Input (,,,Typ B" gemäß EN 61131-2:2007)	
4	GND	-	Versorgung 0 VDC	-	
5	INPUT1	Input	Sicherer digitaler Eingang 1	Input gemäß EN 61131-2:2007	
6	INPUT2	Input	Sicherer digitaler Eingang 2	Input gemäß EN 61131-2:2007	
7	INPUT3	Input	Sicherer digitaler Eingang 3	Input gemäß EN 61131-2:2007	
8	INPUT4	Input	Sicherer digitaler Eingang 4	Input gemäß EN 61131-2:2007	
9	OUT_TEST1	Output	Ausgang mit Kurzschlusserkennung	Aktiver PNP	
10	OUT_TEST2	Output	Ausgang mit Kurzschlusserkennung	Aktiver PNP	
11	OUT_TEST3	Output	Ausgang mit Kurzschlusserkennung	Aktiver PNP	
12	OUT_TEST4	Output	Ausgang mit Kurzschlusserkennung	Aktiver PNP	
13	INPUT5	Input	Sicherer digitaler Eingang 5	Input gemäß EN 61131-2:2007	
14	INPUT6	Input	Sicherer digitaler Eingang 6	Input gemäß EN 61131-2:2007	
15	INPUT7	Input	Sicherer digitaler Eingang 7	Input gemäß EN 61131-2:2007	
16	INPUT8	Input	Sicherer digitaler Eingang 8	Input gemäß EN 61131-2:2007	
17	OUT_TEST5	Output	Ausgang mit Kurzschlusserkennung	Aktiver PNP	
18	OUT_TEST6	Output	Ausgang mit Kurzschlusserkennung	Aktiver PNP	
19	OUT_TEST7	Output	Ausgang mit Kurzschlusserkennung	Aktiver PNP	
20	OUT_TEST8	Output	Ausgang mit Kurzschlusserkennung	Aktiver PNP	
21	INPUT9	Input	Sicherer digitaler Eingang 9	Input gemäß EN 61131-2:2007	
22	INPUT10	Input	Sicherer digitaler Eingang 10	Input gemäß EN 61131-2:2007	
23	INPUT11	Input	Sicherer digitaler Eingang 11	Input gemäß EN 61131-2:2007	
24	INPUT12	Input	Sicherer digitaler Eingang 12	Input gemäß EN 61131-2:2007	

Tab. 4-4 Anschlüsse Modul 485EPE12

Eingangsmodul 485EPE16					
KLEMME	SIGNAL	ТҮР	BESCHREIBUNG	FUNKTIONSWEISE	
1	24VDC	-	Versorgung 24 VDC	-	
2	NODE_SEL 0	Input	Knotenauswahl	Input (" <i>Typ B"</i> gemäß EN 61131-2:2007)	
3	NODE_SEL 1	Input	Kilotenauswani	Input (" <i>Typ B"</i> gemäß EN 61131-2:2007)	
4	GND	-	Versorgung 0 VDC	-	
5	INPUT1	Input	Sicherer digitaler Eingang 1	Input gemäß EN 61131-2:2007	
6	INPUT2	Input	Sicherer digitaler Eingang 2	Input gemäß EN 61131-2:2007	
7	INPUT3	Input	Sicherer digitaler Eingang 3	Input gemäß EN 61131-2:2007	
8	INPUT4	Input	Sicherer digitaler Eingang 4	Input gemäß EN 61131-2:2007	
9	OUT_TEST1	Output	Ausgang mit Kurzschlusserkennung	Aktiver PNP	
10	OUT_TEST2	Output	Ausgang mit Kurzschlusserkennung	Aktiver PNP	
11	OUT_TEST3	Output	Ausgang mit Kurzschlusserkennung	Aktiver PNP	
12	OUT_TEST4	Output	Ausgang mit Kurzschlusserkennung	Aktiver PNP	
13	INPUT5	Input	Sicherer digitaler Eingang 5	Input gemäß EN 61131-2:2007	
14	INPUT6	Input	Sicherer digitaler Eingang 6	Input gemäß EN 61131-2:2007	
15	INPUT7	Input	Sicherer digitaler Eingang 7	Input gemäß EN 61131-2:2007	
16	INPUT8	Input	Sicherer digitaler Eingang 8	Input gemäß EN 61131-2:2007	
17	INPUT9	Input	Sicherer digitaler Eingang 9	Input gemäß EN 61131-2:2007	
18	INPUT10	Input	Sicherer digitaler Eingang 10	Input gemäß EN 61131-2:2007	
19	INPUT11	Input	Sicherer digitaler Eingang 11	Input gemäß EN 61131-2:2007	
20	INPUT12	Input	Sicherer digitaler Eingang 12	Input gemäß EN 61131-2:2007	
21	INPUT13	Input	Sicherer digitaler Eingang 13	Input gemäß EN 61131-2:2007	
22	INPUT14	Input	Sicherer digitaler Eingang 14	Input gemäß EN 61131-2:2007	
23	INPUT15	Input	Sicherer digitaler Eingang 15	Input gemäß EN 61131-2:2007	
24	INPUT16	Input	Sicherer digitaler Eingang 16	Input gemäß EN 61131-2:2007	

Tab. 4-5 Anschlüsse Eingangsmodul 485EPE16

Ausgangsmodul 485EPA02				
KLEMME	SIGNAL	ТҮР	BESCHREIBUNG	FUNKTIONSWEISE
1	24VDC	-	Versorgung 24 VDC	-
2	NODE_SEL 0	Input	Knotonauswahl	Input (" <i>Typ B"</i> gemäß EN 61131-2:2007)
3	NODE_SEL 1	Input	Kiloteriauswarii	Input (" <i>Typ B"</i> gemäß EN 61131-2:2007)
4	GND	-	Versorgung 0 VDC	-
5	OSSD1_A	Output	Sichorhoiteausgang 1	Aktiver PNP
6	OSSD1_B	Output	Sichemeitsausgang 1	Aktiver PNP
7	REST_FBK1	Input	Rückführkreis/Restart 1	Input gemäß EN 61131-2:2007
8	OUT_STATUS1	Output	Statusausgang 1A/1B	Aktiver PNP
9	OSSD2_A	Output	Sichorhoiteausgang 2	Aktiver PNP
10	OSSD2_B	Output	Sichemeitsausgang 2	Aktiver PNP
11	REST_FBK2	Input	Rückführkreis/Restart 2	Input gemäß EN 61131-2:2007
12	OUT_STATUS2	Output	Statusausgang 2A/2B	Aktiver PNP
13	24VDC	-	Versorgung 24 VDC	Versorgung OSSD1/2
14	N.C.	-	-	-
15	GND	-	Versorgung 0 VDC	-
16	N.C.	-	-	-

Tab. 4-6 Anschlüsse Ausgangsmodul 485EPA02

Ausgangsmodul 485EPA04				
KLEMME	SIGNAL	ТҮР	BESCHREIBUNG	FUNKTIONSWEISE
1	24VDC	-	Versorgung 24 VDC	-
2	NODE_SEL 0	Input	Knotonouowahl	Input (" <i>Typ B"</i> gemäß EN 61131-2:2007)
3	NODE_SEL 1	Input	Knotenauswann	Input (" <i>Typ B"</i> gemäß EN 61131-2:2007)
4	GND	-	Versorgung 0 VDC	-
5	OSSD1_A	Output	Sicherheitegungang 1	Aktiver PNP
6	OSSD1_B	Output	Sichemensausgang 1	Aktiver PNP
7	REST_FBK1	Input	Rückführkreis/Restart 1	Input gemäß EN 61131-2:2007
8	OUT_STATUS1	Output	Statusausgang 1	Aktiver PNP
9	OSSD2_A	Output	Sieberheiteeuegeng 2	Aktiver PNP
10	OSSD2_B	Output	Sichemensausgang 2	Aktiver PNP
11	REST_FBK2	Input	Rückführkreis/Restart 2	Input gemäß EN 61131-2:2007
12	OUT_STATUS2	Output	Statusausgang 2	Aktiver PNP
13	24VDC	-	Versorgung 24 VDC	Versorgung OSSD1/2
14	24VDC	-	Versorgung 24 VDC	Versorgung OSSD3/4
15	GND	-	Versorgung 0 VDC	-
16	GND	-	Versorgung 0 VDC	-
17	OSSD4_A	Output	Sichorhoitsausgang 4	Aktiver PNP
18	OSSD4_B	Output	Sichemensausgang 4	Aktiver PNP
19	REST_FBK4	Input	Rückführkreis/Restart 4	Input gemäß EN 61131-2:2007
20	OUT_STATUS4	Output	Statusausgang 4	Aktiver PNP
21	OSSD3_A	Output	Sigherheitegungang 2	Aktiver PNP
22	OSSD3_B	Output	Sichemensausyany 3	Aktiver PNP
23	REST_FBK3	Input	Rückführkreis/Restart 3	Input gemäß EN 61131-2:2007
24	OUT_STATUS3	Output	Statusausgang 3	Aktiver PNP

Tab. 4-7 Anschlüsse Ausgangsmodul 485EPA04

Ausgangsmodul 485EPR02				
KLEMME	SIGNAL	TYP	BESCHREIBUNG	FUNKTIONSWEISE
1	24VDC	-	Versorgung 24 VDC	-
4	GND	-	Versorgung 0 VDC	-
5	OSSD1_A	Input		Aktiver DND
6	OSSD1_B	Input		AKUVELFINF
7	FBK_K1_K2_1	Output	Rückführkreis K1K2 BEREICH 1	Öffnerkontakt
9	A_NC1	Output	– Öffnerkontakt BEREICH 1 –	
10	B_NC1	Output		
13	A_NO11	Output	Schließerkontakt 1 BEREICH 1	
14	B_NO11	Output		
15	A_NO12	Output	Schließerkentakt 2 BEBEICH 2	
16	B_NO12	Output	- Schlielserkontakt 2 BEREICH 2	

Tab. 4-8 Anschlüsse Ausgangsmodul 485EPR02

Ausgangsmodul 485EPR04				
KLEMME	SIGNAL	ТҮР	BESCHREIBUNG	FUNKTIONSWEISE
1	24VDC	-	Versorgung 24 VDC	-
4	GND	-	Versorgung 0 VDC	-
5	OSSD1_A	Input		Aktiver DND
6	OSSD1_B	Input		AKIIVEI FINF
7	FBK_K1_K2_1	Output	Rückführkreis K1K2 BEREICH 1	Öffnerkontakt
9	A_NC1	Output		
10	B_NC1	Output		
13	A_NO11	Output		
14	B_NO11	Output		
15	A_NO12	Output	Sablie Contract 2 DEDEICH 4	
16	B_NO12	Output		
11	A_NC2	Output		
12	B_NC2	Output		
17	OSSD2_A	Input		Altivor DND
18	OSSD2_B	Input		
19	FBK_K1_K2_2	Output	Rückführkreis K1K2 BEREICH 2	Öffnerkontakt
21	A_NO21	Output	Schließerkentakt 1 BEDEICH 2	
22	B_NO21	Output	Schlieberkohlakt i BEREICH Z	
23	A_NO22	Output	Sablin Corkontakt 2 PEPEICH 2	
24	B_NO22	Output	Schließerkontakt 2 BEREICH 2	

Tab. 4-9 Anschlüsse Ausgangsmodul 485EPR04

Modul 485EPS2N - 485EPS1 - 485EPS2				
KLEMME	SIGNAL	ТҮР	BESCHREIBUNG	FUNKTIONSWEISE
1	24V	-	Versorgung 24 VDC	-
2	NODE_SEL 0	Input	Knotenauswahl	Input ("<i>Typ B"</i> gemäß EN 61131-2:2007)
3	NODE_SEL 1	Input	Kilotenauswani	Input ("<i>Typ B"</i> gemäß EN 61131-2:2007)
4	EXT_0V	-	Versorgung 0 VDC	-
5	PROXY1_24V	Output	Anschlüsse PROXIMITY 1	Versorgung 24 VDC an PROXY1
6	PROXY1_REF	Output	(Näherungsschalter) (siehe Kap. 6.1.3 Initiator-Ein- gang Proximity für 485EPS2N auf	Versorgung 0 VDC an PROXY1
7	PROXY1 IN1 (3 WIRES)	Input		Eingang PROXY1 Schließerkontakt
8	PROXY1 IN2 (4 WIRES)	Input	Seite 6-2)	Eingang PROXY1 Öffnerkontakt
9	PROXY2_24V	Output	Anschlüsse PROXIMITY 2	Versorgung 24 VDC an PROXY2
10	PROXY2_REF	Output	(Näherungsschalter)	Versorgung 0 VDC an PROXY2
11	PROXY2 IN1 (3 WIRES)	Input	gang Proximity für 485EPS2N auf	Eingang PROXY2 Schließerkontakt
12	PROXY2 IN2 (4 WIRES)	Input	Seite 6-2)	Eingang PROXY2 Öffnerkontakt
13	N.C.	-	Nicht angeschlossen	-
14	N.C.	-		-
15	N.C.	-		-
16	N.C.	-	7	-

Tab. 4-10 Anschlüsse Modul 485EPS2N - 485EPS1 - 485EPS2

4.3.4 Anschlüsse Encoder mit RJ45-Steckverbinder (485EPS1, 485EPS2)

PIN	EPS1T/2T	EPS1H/2H	EPS1S/2S
1	5VDC	N.C.	N.C.
2	EXT_0V	EXT_0V	EXT_0V
3	N.C.	N.C.	N.C.
4	А	А	А
5	Ā	Ā	Ā
6	N.C.	N.C.	N.C.
7	В	В	В
8	В	В	В

Fig. 4-5 Anschlüsse Encoder mit RJ45-Steckverbinder

Fig. 4-6 Anschlussplan Encoder mit RJ45-Steckverbinder

Modul 485EPR04S00B				
KLEMME	SIGNAL	ТҮР	BESCHREIBUNG	FUNKTIONSWEISE
1	24VDC	-	Versorgung 24 VDC	-
2	NODE_SEL 0	Input	Knotopauswahl	Input (" <i>Typ B"</i> gemäß EN 61131-2:2007)
3	NODE_SEL 1	Input	Khotenauswani	Input (" <i>Typ B"</i> gemäß EN 61131-2:2007)
4	0VDC	-	Versorgung 0 VDC	-
5	REST_FBK1	Input	Rückführkreis/Restart 1	Input (gemäß EN 61131-2:2007)
6	REST_FBK2	Input	Rückführkreis/Restart 2	Input (gemäß EN 61131-2:2007)
7	REST_FBK3	Input	Rückführkreis/Restart 3	Input (gemäß EN 61131-2:2007)
8	REST_FBK4	Input	Rückführkreis/Restart 4	Input (gemäß EN 61131-2:2007)
9	A_NO1	Output	Schließerkontakt Kanal 1	
10	B_NO1	Output	Schließerkohlakt Kanal T	
11	A_NO2	Output	Schließerkontakt Kanal 2	
12	B_NO2	Output		
13	A_NO3	Output	Schließerkontakt Kanal 3	
14	B_NO3	Output	Schließerkohlakt Kanal 5	
15	A_NO4	Output	Schließerkontakt Kanal 4	
16	B_NO4	Output	Comeservonart Rahar 4	

Tab. 4-11 Anschlüsse Modul 485EPR04S00B

	Modul 485EPR04S08B			
KLEMME	SIGNAL	ТҮР	BESCHREIBUNG	FUNKTIONSWEISE
1	24VDC	-	Versorgung 24 VDC	-
2	NODE_SEL 0	Input	Knotonauswahl	Input (,,,Typ B" gemäß EN 61131-2:2007)
3	NODE_SEL 1	Input	Kilotenauswani	Input (,,,Typ B" gemäß EN 61131-2:2007)
4	0VDC	-	Versorgung 0 VDC	-
5	REST_FBK1	Input	Rückführkreis/Restart 1	Input (gemäß EN 61131-2:2007)
6	REST_FBK2	Input	Rückführkreis/Restart 2	Input (gemäß EN 61131-2:2007)
7	REST_FBK3	Input	Rückführkreis/Restart 3	Input (gemäß EN 61131-2:2007)
8	REST_FBK4	Input	Rückführkreis/Restart 4	Input (gemäß EN 61131-2:2007)
9	A_NO1	Output	- Schließerkontakt Kanal 1	
10	B_NO1	Output		
11	A_NO2	Output	Schließerkontakt Kanal 2	
12	B_NO2	Output		
13	A_NO3	Output	Schließerkontakt Kanal 3	
14	B_NO3	Output		
15	A_NO4	Output	Schließerkontakt Kanal 4	
16	B_NO4	Output		
17	SYS_STATUS1	Output	Programmierbarer Signalausgang 1	Aktiver PNP
18	SYS_STATUS2	Output	Programmierbarer Signalausgang 2	Aktiver PNP
19	SYS_STATUS3	Output	Programmierbarer Signalausgang 3	Aktiver PNP
20	SYS_STATUS4	Output	Programmierbarer Signalausgang 4	Aktiver PNP
21	SYS_STATUS5	Output	Programmierbarer Signalausgang 5	Aktiver PNP
22	SYS_STATUS6	Output	Programmierbarer Signalausgang 6	Aktiver PNP
23	SYS_STATUS7	Output	Programmierbarer Signalausgang 7	Aktiver PNP
24	SYS_STATUS8	Output	Programmierbarer Signalausgang 8	Aktiver PNP

Tab. 4-12 Anschlüsse Modul 485EPR04S08B

Modul 485EPA00S08				
KLEMME	SIGNAL	ТҮР	BESCHREIBUNG	FUNKTIONSWEISE
1	24VDC	-	Versorgung 24 VDC	-
2	NODE_SEL 0	Input	Knotonauswahl	Input (" <i>Typ B"</i> gemäß EN 61131-2:2007)
3	NODE_SEL 1	Input	Kilotenauswani	Input (" <i>Typ B"</i> gemäß EN 61131-2:2007)
4	0VDC	-	Versorgung 0 VDC	-
5	24VDC STATUS 1-8	-	Versorgung 24VDC AUSGANG STATUS 1-8	-
6	-	-	-	-
7	-	-	-	-
8	-	-	-	-
9	OUT_STATUS11	Output	Programmierbarer Signalausgang 1	Aktiver PNP
10	OUT_STATUS12	Output	Programmierbarer Signalausgang 2	Aktiver PNP
11	OUT_STATUS13	Output	Programmierbarer Signalausgang 3	Aktiver PNP
12	OUT_STATUS14	Output	Programmierbarer Signalausgang 4	Aktiver PNP
13	OUT_STATUS15	Output	Programmierbarer Signalausgang 5	Aktiver PNP
14	OUT_STATUS16	Output	Programmierbarer Signalausgang 6	Aktiver PNP
15	OUT_STATUS17	Output	Programmierbarer Signalausgang 7	Aktiver PNP
16	OUT_STATUS18	Output	Programmierbarer Signalausgang 8	Aktiver PNP

Tab. 4-13 Anschlüsse Modul 485EPA00S08

	Modul 485EPA00S16				
KLEMME	SIGNAL	ТҮР	BESCHREIBUNG	FUNKTIONSWEISE	
1	24VDC	-	Versorgung 24VDC	-	
2	NODE_SEL0	Input	Knotonauswahl	Input (,,,Typ B" gemäß EN 61131-2:2007)	
3	NODE_SEL1	Input	KIIOteriauswarii	Input (,,,Typ B" gemäß EN 61131-2:2007)	
4	0VDC	-	Versorgung 0VDC	-	
5	24VDC STATUS 1-8	-	Versorgung 24VDC AUSGANG STATUS 1-8	-	
6	24VDC STATUS 9-16	-	Versorgung 24VDC AUSGANG STATUS 9-16	-	
7	-	-	-	-	
8	-	-	-	-	
9	OUT_STATUS11	Output	Programmierbarer Signalausgang 1	Aktiver PNP	
10	OUT_STATUS12	Output	Programmierbarer Signalausgang 2	Aktiver PNP	
11	OUT_STATUS13	Output	Programmierbarer Signalausgang 3	Aktiver PNP	
12	OUT_STATUS14	Output	Programmierbarer Signalausgang 4	Aktiver PNP	
13	OUT_STATUS15	Output	Programmierbarer Signalausgang 5	Aktiver PNP	
14	OUT_STATUS16	Output	Programmierbarer Signalausgang 6	Aktiver PNP	
15	OUT_STATUS17	Output	Programmierbarer Signalausgang 7	Aktiver PNP	
16	OUT_STATUS18	Output	Programmierbarer Signalausgang 8	Aktiver PNP	
17	OUT_STATUS19	Output	Programmierbarer Signalausgang 9	Aktiver PNP	
18	OUT_STATUS110	Output	Programmierbarer Signalausgang 10	Aktiver PNP	
19	OUT_STATUS111	Output	Programmierbarer Signalausgang 11	Aktiver PNP	
20	OUT_STATUS112	Output	Programmierbarer Signalausgang 12	Aktiver PNP	
21	OUT_STATUS113	Output	Programmierbarer Signalausgang 13	Aktiver PNP	
22	OUT_STATUS114	Output	Programmierbarer Signalausgang 14	Aktiver PNP	
23	OUT_STATUS115	Output	Programmierbarer Signalausgang 15	Aktiver PNP	
24	OUT_STATUS116	Output	Programmierbarer Signalausgang 16	Aktiver PNP	

Tab. 4-14 Anschlüsse Modul 485EPA00S16

Modul 485EPA02S08				
KLEMME	SIGNAL	ТҮР	BESCHREIBUNG	FUNKTIONSWEISE
1	24VDC	-	Versorgung 24VDC	-
2	NODE_SEL0	Input	Knotonauswahl	Input (" <i>Typ B"</i> gemäß EN 61131-2:2007)
3	NODE_SEL1	Input	Kilotenauswani	Input (" <i>Typ B"</i> gemäß EN 61131-2:2007)
4	0VDC	-	Stromversorgung 0VDC	-
5	REST_FBK1	Input	Feedback/Resart 1	Input (gemäß EN 61131-2:2007)
6	REST_FBK2	Input	Feedback/Resart 2	Input (gemäß EN 61131-2:2007)
7	REST_FBK3	Input	Feedback/Resart 3	Input (gemäß EN 61131-2:2007)
8	REST_FBK4	Input	Feedback/Resart 4	Input (gemäß EN 61131-2:2007)
9	OSSD1	Output	Statischer Sicherheitsausgang 1	
10	OSSD2	Output	Statischer Sicherheitsausgang 2	Aktiver PNP oben,
11	OSSD3	Output	Statischer Sicherheitsausgang 3	4 Einzelkanäle (oder 2 Doppelkanäle)
12	OSSD4	Output	Statischer Sicherheitsausgang 4	
13	-	-	-	-
14	24VDC	-	Versorgung 24VDC	-
15	-	-	-	-
16	-	-	-	-
17	OUT_STATUS1	Output	Programmierbarer Statusausgang 1	Aktiver PNP
18	OUT_STATUS2	Output	Programmierbarer Signalausgang 2	Aktiver PNP
19	OUT_STATUS3	Output	Programmierbarer Signalausgang 3	Aktiver PNP
20	OUT_STATUS4	Output	Programmierbarer Signalausgang 4	Aktiver PNP
21	OUT_STATUS5	Output	Programmierbarer Signalausgang 5	Aktiver PNP
22	OUT_STATUS6	Output	Programmierbarer Signalausgang 6	Aktiver PNP
23	OUT_STATUS7	Output	Programmierbarer Signalausgang 7	Aktiver PNP
24	OUT_STATUS8	Output	Programmierbarer Signalausgang 8	Aktiver PNP

Tab. 4-15 Anschlüsse Modul 485EPA02S08

4.3.5 Beispiel für den Anschluss des eloProg-Systems an die Maschinensteuerung

Fig. 4-7 Anschlussbeispiel eloProg System an die Maschinensteuerung

4.4 Checkliste nach der Installation

Das eloProg System kann Fehler in den einzelnen Modulen erkennen. Führen Sie dennoch die im Anschluss genannten Prüfungen bei der Installation und mindestens einmal jährlich aus, um den einwandfreien Betrieb des Systems zu garantieren:

- 1. Einen vollständigen Systemtest durchführen (siehe Kap. 8.1.14 System-Test auf Seite 8-15).
- 2. Überprüfen, ob die Kabel korrekt in die Anschlussklemmen eingeführt sind.
- 3. Überprüfen, ob alle LEDs (Anzeigen) korrekt aufleuchten.
- 4. Überprüfen der Positionierung aller an eloProg angeschlossenen Sensoren.
- 5. Überprüfen der korrekten Befestigung von eloProg an der DIN-Schiene.
- 6. Überprüfen, ob alle externen Anzeigen korrekt funktionieren.

Warnung

Nach Installation, Wartung oder jeder Konfigurationsänderung einen Systemtest durchführen wie in *Kap. 8.1.14 System-Test auf Seite 8-15*.

5 FUNKTIONSDIAGRAMM

Fig. 5-1 Funktionsdiagramm

6 BESCHREIBUNG DER SIGNALE

6.1 Eingänge

6.1.1 MASTER ENABLE

Das Basismodul verfügt über 2 Eingänge: MASTER_ENABLE1 und MASTER_ENABLE2.

Hinweis

Diese Signale müssen <u>beide</u> auf HIGH-Potential (24 VDC) eingestellt sein, um den ordnungsgemäßen Betrieb von eloProg zu ermöglichen. Möchte der Bediener eloProg deaktivieren, können diese Eingänge auf LOW-Pegel (0 VDC) eingestellt werden.

6.1.2 NODE SEL

Die Eingänge NODE_SEL 0 und NODE_SEL 1 (auf den SLAVE-Modulen) dienen dazu, den Slave-Modulen über Anschlüsse entsprechend *Tab. 6-1 NODE SEL* eine Adresse zuzuweisen:

	NODE_SEL 0 (Klemme 2)	NODE_SEL 1 (Klemme 3)
SLAVE-MODUL 0	0 (oder nicht angeschlossen)	0 (oder nicht angeschlossen)
SLAVE-MODUL 1	24 VDC	0 (oder nicht angeschlossen)
SLAVE-MODUL 2	0 (oder nicht angeschlossen)	24 VDC
SLAVE-MODUL 3	24 VDC	24 VDC

Tab. 6-1 NODE SEL

Es sind maximal 4 Adressen vorgesehen und daher maximal 4 Module desselben Typs, die in einem System verwendet werden können.

Hinweis

Es ist nicht zulässig, dieselbe Adresse auf 2 Modulen desselben Typs zu verwenden.

6.1.3 Initiator-Eingang Proximity für 485EPS2N

Konfiguration mit überlappenden Initiator-Signalen

Sind die Eingänge des Moduls 485EPS2N für eine Messung mit 2 Initiatoren (z.B. induktive Näherungsschalter) konfiguriert, können diese im Interleaved-(Überlappungs-)Modus konfiguriert werden. Unter Einhaltung der im Anschluss genannten Bedingungen wird Performance Level PLe erreicht:

- Die Initiatoren müssen so installiert sein, dass die aufgezeichneten Signale sich überlappen.
- Die Initiatoren müssen so installiert sein, dass mindestens einer immer aktiv ist.

Fig. 6-1 Initiator-Eingang Proximity

Weitere Bedingungen müssen erfüllt werden:

- Initiatoren PNP-schaltend
- Initiatoren mit Schließerfunktion (Ausgang HIGH, wenn das Objekt erfasst wird)
- Initiatoren gleichen Typs verwenden, MTTF_d-Wert > 70 Jahre
- Sind die vorgenannten Bedingungen erfüllt, liegt der DC bei 90% (DC, siehe Kap. 1.3 Liste der Abkürzungen und Symbole auf Seite 1-2).

Hinweis

An ein Modul 485EPS2N können maximal 2 Stück Näherungsschalter (3- oder 4-Draht) angeschlossen werden.

Bei Verwendung eines 3-Draht Näherungsschalters ist der Schaltausgang (PNP oder NPN) an den Eingang "IN1" des 485EPS2N-Modules anzuschließen, der Eingang "IN2" bleibt offen (unbeschaltet).

6.1.4 REST_FBK

Das Signal REST_FBK ermöglicht nicht nur die Überprüfung des EDM-Signals (External Device Monitoring) des Feedbackkreises der externen Schütze, sondern auch einen manuellen/automatischen Betrieb/Restart (siehe *Tab. 6-2 REST_FBK*) mit/ohne Wiederanlaufsperre.

Warnung

- Wenn die Anwendung es erfordert, muss die Ansprechzeit der externen Schütze durch ein zusätzliches Gerät überprüft werden.
- Die Start-Einrichtung muss sich außerhalb des Gefahrenbereichs an einem Ort befinden, an dem der Gefahrenbereich und der gesamte betroffene Arbeitsbereich gut einsehbar sind.
- Es darf nicht möglich sein, die Start-Einrichtung aus dem Gefahrenbereich heraus zu erreichen.

Jedes Paar OSSD-Ausgänge hat einen entsprechenden REST_FBK-Eingang.

FUNKTIONSWEISE	EDM	REST_FBK		
AUTOMATISCH	Mit Kontrolle K1_K2	24V K1 K2 ext_REST_FBK		
	Ohne Kontrolle K1_K2	24Vext_REST_FBK		
MANUELL	Mit Kontrolle K1_K2	24V K1 K2 ext_REST_FBK		
	Ohne Kontrolle K1_K2	24V ext_REST_FBK		

Tab. 6-2 REST_FBK

6.2 Ausgänge

6.2.1 OUT STATUS

Das Signal OUT STATUS ist ein programmierbarer digitaler Ausgang, der den Status folgender Objekte angeben kann:

- Einen Eingang
- Einen Ausgang
- Einen Knoten des mit der Konfigurationssoftware geplanten logischen Diagramms

6.2.2 OUT TEST

Die Signale OUT TEST werden verwendet, um Kurzschlüsse oder Überlasten auf den Eingängen zu überwachen (siehe *Fig. 6-2 485EPB*).

Hinweis

- Die maximal für jeden Ausgang OUT TEST steuerbare Anzahl Eingänge sind:
 - 2 INPUT parallel geschaltet: 485EPB, 485EPE08A02, 485EPE08, 485EPE12
 4 INPUT parallel geschaltet: 485EPE16
- Die maximal zulässige Länge für OUT TEST-Signalverbindungen beträgt 100 m.

6.2.3 OSSD (Module 485EPB, 485EPE08A02, 485EPA02, 485EPA04)

Die OSSD-Ausgänge (sichere Halbleiterausgänge) sind gegen Kurzschlüsse geschützt und ergeben:

- Im ON-Status: UB 0,75 V bis UB (mit UB von 24 V ± 20 %)
- Im OFF-Status: 0 V bis 2 Veff.

Die maximale Last beträgt 400 mA bei 24 VDC, was mindestens einer ohmschen Last von 60 Ω entspricht. Die maximale kapazitive Last beträgt 0,82 μ F. Die maximale induktive Last beträgt 30 mH. Bei Anschluss von Schützen an die OSSD-Ausgänge sollte daher zur Schutzbeschaltung anstelle von RC-Gliedern eine Beschaltung mit Varistor oder Freilaufdiode gewählt werden.

Hinweis

Der Anschluss von externen Geräten ist nur für die in der Konfiguration ausgewählten Typen möglich.

Start/Restart: Jeder OSSD-Ausgang kann, wie in der *Tab. 6-3 Konfiguration OSSD-Ausgänge* angegeben, konfiguriert werden:

Automatisch	Der Ausgang wird gemäß den von der SW vorgegebenen Konfigurationen nur aktiviert, wenn der entsprechende Eingang REST_FBK an 24 VDC angeschlossen ist.
Manuell	Der Ausgang wird gemäß den von der SW vorgegebenen Konfigurationen nur aktiviert, wenn der entsprechende Eingang REST_FBK EINEN LOGISCHEN ÜBERGANG 0>1 verfolgt.
Überwacht	Der Ausgang wird gemäß den von der SW vorgegebenen Konfigurationen nur aktiviert, wenn der entsprechende Eingang REST_FBK EINEN LOGISCHEN ÜBERGANG 0>1>0 verfolgt.

Tab. 6-3 Konfiguration OSSD-Ausgänge

Fig. 6-3 OSSD-Ausgänge

6.2.4 OSSD (Modul 485EPA00S08)

485EPA00S08 liefert 4 Sicherheitsausgänge mit Hochstrom (max. 2 A pro Kanal). Es können zwei unterschiedliche Output-Konfigurationen eingegeben werden (mit dem eloProg-Safety-Designer):

- Vier Einzelkanäle (1 Sicherheitsausgang pro Kanal mit jeweiligem Feedback-Eingang).
- Zwei Doppelkanäle (2 Sicherheitsausgänge pro Kanal mit jeweiligem Feedback-Eingang).

Konfiguration Ausgänge mit 2 Doppelkanälen (Sicherheitskategorie 4)

Konfiguration Ausgänge mit 4 Einzelkanälen (Sicherheitskategorie 4)

Fig. 6-4 OSSD 485EPA00S08

Hinweis

Bei Verwendung von 485EPA00S08 mit Ausgangsstrom >500mA dieses von den angrenzenden Modulen durch Einfügen eines T-Verteilers dazwischen trennen.

6.2.5 Relaismodule (485EPR02, 485EPR04, 485EPR04S00B, 485EPR04S08B)

Charakteristiken des Ausgangsstromkreises

Die Relaismodule 485EPR02/485EPR04 haben Sicherheitsrelais mit zwangsgeführten Kontakten, von denen jedes **2 Schließerkontakte, 1 Öffnerkontakt und 1 Feedback-Öffnerkontakt** hat. Das Modul 485EPR02 verwendet 2 Sicherheitsrelais, das Modul 485EPR04 4 Sicherheitsrelais. Die Module 485EPR04S00B/485EPR04S08B verwenden vier Sicherheitsrelais mit zwangsgeführten Kontakten. Jedes Relais besitzt einen Schaltausgang (Schließer), der von der Logik des Moduls dank des internen FBK-Kontakts überwacht wird.

Hinweis

Um die möglichen Betriebsarten für die mit der Software ePSD konfigurierbaren Module 485EPR04S00B/485EPR04S08B festzulegen, siehe *Kap. RELAIS auf Seite 8-21*.

Erregungsspannung	1731 VDC
Schaltbare Mindestspannung	10 VDC
Schaltbarer Mindeststrom	20 mA
Schaltbare Höchstspannung (DC)	250 VDC
Schaltbare Höchstspannung (AC)	400 VAC
Schaltbarer Höchststrom	6 A
Reaktionszeit	12 ms
Mechanische Lebensdauer der Kontakte	> 20 x 10 ⁶

Tab. 6-4 Relaismodule - Charakteristiken des Ausgangsstromkreises

Hinweis

- Um die korrekte Isolierung zu garantieren und eine Beschädigung oder vorzeitige Alterung der Relais zu vermeiden, muss jede Ausgangsleitung mit einer trägen 4 A-Schmelzsicherung geschützt werden. Die Lasteigenschaften müssen den Angaben aus *Tab. 6-4 Relaismodule - Charakteristiken des Ausgangsstromkreises* entsprechen.
- *Kap. 7.1.9 Ausgangsmodule 485EPR02 485EPR04 auf Seite 7-3* beachten (für weitere Informationen hinsichtlich dieser Relais).

Modul 485EPR02/485EPR04 interne Kontakte

485EPR04

Fig. 6-5 Modul 485EPR02/485EPR04 interne Kontakte

Verdrahtungsbeispiel des Relaismoduls 485EPR02 mit dem Basismodul 485EPB

Q 24VDC 24VDC OUT_TEST1 13 1 JJJ 2 MASTER_ENABLE1 OUT_TEST2 14 3 MASTER_ENABLE2 15 OVDC 4 GND 16 INPUT1 5 OSSD1_A 17 \square INPUT2 6 OSSD1_B 18 5EPI 7 19 RESTART_FBK1 OUT_STATUS1 ∞ 20 8 4 21 9 OSSD2_A 10 OSSD2_B 22 RESTART_FBK2 23 11 INPUT7 OUT_STATUS2 24 12 INPUT8 485EPR02 9 B_N012 16 OSSD1_B 6 14 B_N011 OSSD1_A 5 A_NC1 FB_B OVDC 0 B_NC1 FB_A 13 +24VDC 1 A_N01 15 FBK_K1_K2_1 A_N012 10

Funktionsdiagramm des an das Modul 485EPR02/485EPR04 angeschlossenen Ausgangsstromkreises

7 TECHNISCHE DATEN

7.1 Allgemeine Systemeigenschaften

7.1.1 Sicherheitsparameter des Systems

Parameter	Wert	Bezugsnorm	
PFH _d	10 ⁻⁸ ÷ 10 ⁻⁷	IEC 61508:2010	
SIL	3	- 120 01308.2010	
SILCL	3	IEC 62061:2013	
Тур	4	EN 61496-1:2013	
PL	е	ISO 13849-1:2015 IEC 62061:2013	
DC _{avg}	Hoch		
MTTFd (Jahre)	30÷100		
Kategorie	4		
Lebensdauer des Geräts	20 Jahre		
Verschmutzungsgrad	2		

Tab. 7-1 Sicherheitsparameter des Systems

7.1.2 Allgemeine Daten

Max. Anzahl Eingänge	128			
Max. Anzahl OSSD-Ausgänge	16 Zweikanal-Ausgänge			
Max. Anzahl Statusausgänge	16			
Max. Anzahl der Slave-Module		11		
(ausgenommen 485EPR02-485EPR04)	14			
Max. Anzahl der Slave-Module desselben Typs		4		
(ausgenommen 485EPR02-485EPR04)	+			
Nennspannung	24 VDC ± 20 %			
	Aktiver PNP (EN 61131-2:2007)			
OSSD (485EPB, 485EPE08A02, 485EPA02, 485EPA04)	Aktiver PNP – max. 400 mA@24 V DC			
Status-OUTPUT (485EPB, 485EPE08A02, 485EPA02, 485EPA04)	Aktiver PNP – max. 100 mA@24 VDC			
	485EPB	10,6 - 12,6 ms	+ T _{Filter_Input}	
	485EPB + 1 Slave	11,8 - 26,5 ms	+ T _{Filter_Input}	
Reaktionszeit (ms)	485EPB + 2 Slaves	12,8 - 28,7 ms	+ T _{Filter_Input}	
Die Reaktionszeiten hängen von folgenden Parametern ab:	485EPB + 3 Slaves	13,9 - 30,8 ms	+ T _{Filter_Input}	
1.) Anzahl der Installierten Slave-Module	485EPB + 4 Slaves	15 - 33 ms	+ T _{Filter_Input}	
3.) Anzahl der OSSD-Ausgänge	485EPB + 5 Slaves	16 - 35 ms	+ T _{Filter_Input}	
Die tatsächlichen Werte für die Reaktionszeiten der jeweiligen	485EPB + 6 Slaves	17 - 37,3 ms	+ T _{Filter_Input}	
Konfiguration werden vom eloProg-Safety-Designer errechnet	485EPB + 7 Slaves	18,2 - 39,5 ms	+ T _{Filter_Input}	
	485EPB + 8 Slaves	19,3 - 41,7 ms	+ T _{Filter_Input}	
Fehler-Reaktionszeit (ms)	485EPB + 9 Slaves	20,4 - 43,8 ms	+ T _{Filter_Input}	
Die Fehler-Reaktionszeiten stimmen mit den Reaktionszeiten grundsätzlich überein, mit Ausnahme der Encoder-Module	485EPB + 10 Slaves	21,5 - 46 ms	+ T _{Filter_Input}	
485EPSx, deren Wert bei 2s liegt.	485EPB + 11 Slaves	22,5 - 48,1 ms	+ T _{Filter_Input}	
	485EPB + 12 Slaves	23,6 - 50,3 ms	+ T _{Filter_Input}	
	485EPB + 13 Slaves	24,7 - 52,5 ms	+ T _{Filter_Input}	
	485EPB + 14 Slaves	25,8 - 54,6 ms	+ T _{Filter_Input}	
Anschluss 485EPB> Module	Proprietärer 5-poliger Bus			
Anschlusskabelquerschnitt	0,5 - 2,5 mm ²			
Max. Länge der Anschlüsse	100 m			
Betriebstemperatur -10 - 55 °C				
Lagertemperatur	-20 - 85 °C			
Relative Feuchtigkeit	10 % - 95 %			

Tab. 7-2 Allgemeine Daten

Hinweis

T_{Filter_Input} = max. Filterzeit (siehe *Kap. 8.2.2 Eingänge INPUT*, *Abschnitt Filter (ms) auf Seite 8-26*).

7.1.3 Gehäuse

Beschreibung	Elektronikgehäuse, max. 24 Pole, mit Arretierung aus Metall
Gehäusematerial	Polyamid
Schutzgrad des Gehäuses	IP 20
Schutzgrad Klemmenleiste	IP 2X
Befestigung	Schnellanschluss auf Schiene gemäß EN 60715
Abmessungen (H x B x T)	108 x 22,5 x 114,5

Tab. 7-3 Gehäuse

7.1.4 Basismodul 485EPB

PFHd (IEC 61508:2010)	6,06E-9
Nennspannung	24 VDC ± 20 %
Ausgangsleistung	max. 3 W
Modulaktivierung (Anzahl/Beschreibung)	2 / Aktiver PNP " <i>Typ B</i> " gemäß EN 61131-2:2007
Digitale Eingänge (Anzahl/Beschreibung)	8 / Aktiver PNP gemäß EN 61131-2:2007
INPUT FBK/RESTART (Anzahl/Beschreibung)	2 / Steuerung EDM / Automatischer oder manueller Betrieb mit RESTART- Taste möglich
OUTPUT Test (Anzahl/Beschreibung)	4 / zur Kontrolle von Kurzschlüssen - Überlasten
Digitale Ausgänge (Anzahl/Beschreibung)	2 / programmierbar - Aktiver PNP
OSSD (Anzahl/Beschreibung)	2 Paare / Statische Sicherheitsausgänge - Aktiver PNP max. 400 mA@24 VDC
Steckplatz für Speicherstick (350EPS)	vorhanden
Anschluss an PC	USB 2.0 (Hi Speed) - max. Kabellänge: 3 m
Anschluss an Slave-Module	über proprietären 5-Wege-Bus

Tab. 7-4 Basismodul 485EPB

7.1.5 Ein-/Ausgangsmodul 485EPE08A02

PFHd (IEC 61508:2010)	5,72E-9
Nennspannung	24 VDC ± 20 %
Ausgangsleistung	max. 3 W
Digitale Eingänge (Anzahl/Beschreibung)	8 / Aktiver PNP (gemäß EN 61131-2:2007)
OUTPUT Test (Anzahl/Beschreibung)	8 / zur Kontrolle von Kurzschlüssen - Überlasten
Digitale Ausgänge (Anzahl/Beschreibung)	2 / programmierbar - Aktiver PNP
OSSD (Anzahl/Beschreibung)	2 Paare / Statische Sicherheitsausgänge: Aktiver PNP - max. 400 mA@24 VDC
Anschluss an Basismodul	über proprietären 5-Wege-Bus

Tab. 7-5 Ein-/Ausgangsmodul 485EPE08A02

7.1.6 Eingangsmodule 485EPE08 - 485EPE12 - 485EPE16

Modell	485EPE08	485EPE12	485EPE16			
PFHd (IEC 61508:2010)	5,75E-9	3,24E-9	7,09E-9			
Nennspannung		24 VDC ± 20 %				
Ausgangsleistung	max. 3 W					
Digitale Eingänge (Anzohl/Recohreihung)	8	16				
Digitale Elligarige (Anzani/Deschleibung)	Aktiver PNP gemäß EN 61131-2:2007					
OUTPUT Test (Anzahl)	4 8 4					
Anschluss an Basismodul	über proprietären 5-Wege-Bus					

Tab. 7-6 Eingangsmodule 485EPE08 - 485EPE12 - 485EPE16

7.1.7 Ausgangsmodule 485EPA02 - 485EPA04

Modell	485EPA02	485EPA04				
PFHd (IEC 61508:2010)	3,16E-9	3,44E-9				
Nennspannung	24 VDC	C ± 20 %				
Ausgangsleistung	max. 3 W					
Digitale Ausgänge (Anzahl/Reschreibung)	2	4				
Digitale Ausgange (Anzani/Deschreibung)	programmierbar - Aktiver PNP					
OSSD (Anzahl/Reschroibung)	2	4				
(Alizani/Descriteibung)	Statische Sicherheitsausgänge: Aktiver PNP max. 400 mA@24 VDC					
Anschluss an Basismodul	über proprietären 5-Wege-Bus					

Tab. 7-7 Ausgangsmodule 485EPA02 - 485EPA04

7.1.8 Ausgangsmodule 485EPA00S08 - 485EPA00S16

Modell	485EPA00S08	485EPA00S16			
Nennspannung	24 VDC ± 20 %				
Ausgangsleistung	max. 3 W				
Signaliciorunge OLITELIT (Anzahl/Reschreibung)	8 16				
Signalisierungs-OOTFOT (Anzani/Deschleibung)	programmierbar - Aktiver PNP				
Anschluss an Basismodul	über proprietären 5-Wege-Bus MSC				

Tab. 7-8 Ausgangsmodule 485EPA00S08 - 485EPA00S16

7.1.9 Ausgangsmodule 485EPR02 - 485EPR04

Modell		485EPR02	485EPR04			
Nennspannung		24 VDC	C ± 20 %			
Ausgangsleistu	ung	max	. 3 W			
Schaltspannun	g	240	VAC			
Schaltstrom		max	. 6 A			
Arbeitskontakte		2 Schließer + 1 Öffner	4 Schließer + 2 Öffner			
FEEDBACK-Kontakte		1	2			
Reaktionszeit		12	ms			
Mechanische L	ebensdauer der Kontakte	> 20	x 10 ⁶			
Anschluss an A	Ausgangsmodul	über Anschlussklemmen	(kein Anschluss über Bus)			
B10d	AC15 230 V	I = 3A: 3 I = 1 A: 7	00.000 Zyklen 50.000 Zyklen			
	DC13 24 V	I <= 2A: 10.	I <= 2A: 10.000.000 Zyklen			

Tab. 7-9 Ausgangsmodule 485EPR02 - 485EPR04

485EPR02 - 485EPR04: SICHERHEITSDATENBLATT											
FEEDBACK-ANSCHLUSS AKTIV						FEEDB	ACK-ANSCH	LUSS NIC	ΗΤ ΑΚΤΙΛ	/	
PFHd	SFF	MTTFd	DCavg			PFHd	SFF	MTTFd	DCavg		
3,09E-10	99,6%	2335,94	98,9%	tcycle1		9,46E-10	60%	2335,93	0	tcycle1	
8,53E-11	99,7%	24453,47	97,7%	tcycle2	DC13 (2A)	1,08E-10	87%	24453,47	0	tcycle2	DC13 (2A)
6,63E-11	99,8%	126678,49	92,5%	tcycle3		6,75E-11	97%	126678,5	0	tcycle3	
8,23E-09	99,5%	70,99	99,0%	tcycle1		4,60E-07	50%	70,99	0	tcycle1	
7,42E-10	99,5%	848,16	99,0%	tcycle2	AC15 (3A)	4,49E-09	54%	848,15	0	tcycle2	AC15 (3A)
1,07E-10	99,7%	12653,85	98,4%	tcycle3		1,61E-10	79%	12653,85	0	tcycle3	
3,32E-09	99,5%	177,38	99,0%	tcycle1		7,75E-08	51%	177,37	0	tcycle1	
3,36E-10	99,6%	2105,14	98,9%	tcycle2	AC15 (1A)	1,09E-09	60%	2105,14	0	tcycle2	AC15 (1A)
8,19E-11	99,7%	28549,13	97,5%	tcycle3		1,00E-10	88%	28549,13	0	tcycle3	

tcycle1: 300 s (1 Schaltausgang alle 5 Minuten) tcycle2: 3600 s (1 Schaltausgang stündlich) tcycle3: 1 Schaltausgang täglich

(PFHd gemäß IEC 61508:2010, MTTFd, DCavg gemäß ISO 13849-1:2015)

Tab. 7-10 485EPR02 - 485EPR04: Sicherheitsdatenblatt

7.1.10 Ausgangsmodul 485EPA02S08

PFHd (IEC 61508:2010)	9,28E-09
Nennspannung	24 VDC ± 20 %
Verlustleistung max.	max. 4 W
Strom OSSD-Ausgänge	max. 2A pro Kanal *
Anzahl der Sicherheitsausgänge (OSSD)	4 Einzelkanäle (oder 2 Doppelkanäle), Kat. 4
INPUT FBK/RESTART (Anzahl / Beschreibung)	4 / Steuerung EDM / Automatischer oder manueller Betrieb mit Restart-Taste
Digitale OUTPUTS (Anzahl / Beschreibung)	8 / programmierbare Ausgänge / Aktiver PNP
Reaktionszeit	12 ms
Anschluss an M1	über proprietären 5-Wege-Bus

Tab. 7-11 Ausgangsmodul 485EPA02S08

* Bei Verwendung von 485EPA02S08 mit Ausgangsstrom >500mA dieses von den angrenzenden Modulen durch Einfügen eines T-Verteilers dazwischen trennen.

7.1.11 Drehzahlüberwachungsmodule 485EPS2N - 485EPS1 - 485EPS2

Modell	485EPS2N	485EPS1 485EPS2				
PFHd	5,98E-09					
PFHd (TTL)	-	7,08E-09 (485EPS1T) 8,18E-09 (485EPS				
PFHd (sin/cos)	-	7,94E-09 (485EPS1S) 9,89E-09 (485EPS				
PFHd (HTL24)	-	6,70E-09 (485EPS1H)	7,42E-09 (485EPS2H)			
Nennspannung		24 VDC ± 20 %				
Ausgangsleistung max.		3 W				
Eingangsimpedanz	-	120 Ohm (Modelle 485EP 120 Ohm (Modelle 485EP	2S1T - 485EPS2T) 2S1S - 485EPS2S)			
Encoder-Schnittstelle	-	TTL (Modelle 485EPS1T - 485EPS2T) HTL (Modelle 485EPS1H - 485EPS2H) sin/cos (Modelle 485EPS1S - 485EPS2S)				
Encoder-Anschlüsse	-	RJ45				
Eingangssignale des Encoders elektrisch gemäß Norm EN 61800-5	-	Nennisolierspannung 250 V Überspannungskategorie II Nennimpulsspannung 4,00 kV				
Max. Anzahl Encoder	-	1	2			
Max. Frequenz Encoder	-	500 kHz (H1	ΓL: 300 kHz)			
Einstellbarer Schwellwertbereich Encoder	-	1 Hz ÷ 4	450 kHz			
Kategorie Initiatoren		PNP/NPN - 3/4 Drähte				
Anschlüsse Initiatoren		Klemmenleiste				
Einstellbarer Schwellwertbereich Initiatoren		1 Hz ÷ 4 kHz				
Max. Anzahl Initiatoren		2				
Max. Frequenz Initiatoren		5 kHz				
Max. Anzahl Achsen	2					
Stillstands-/Überdrehzahl-Abstand		>10 Hz				
Min. Abstand zwischen Schwellwerten (wenn Anzahl Schwellwerte > 1)		> 5%				
Anschluss an Basismodul	ü	ber proprietären 5-Wege-Bi	us			

Tab. 7-12 Module 485EPS2N - 485EPS1 - 485EPS2

7.1.12 Modul 485EPR04S00B - 485EPR04S08B

Modell	485EPR04S00B	485EPR04S08B			
PFHd (IEC 61508:2010)	2,9E-9	2,94E-9			
Nennspannung	24 VDC	± 20 %			
Ausgangsleistung	3	W			
Schaltspannung	240	VAC			
Schaltstrom	6 A				
Anzahl Schließerkontakte	4				
Eingänge FBK/RESTART (Anzahl/Beschreibung)	4 / Steuerung EDM / automatischer oder manueller Betrieb mit RESTART-Taste möglich				
Digitale Ausgänge (Anzahl/Beschreibung)	- 8 / programmierbar - Aktiver PNP oben				
Reaktionszeit	12	ms			
Mechanische Lebensdauer der Kontakte	> 40 x 10 ⁶				
Anschluss an Ausgangsmodul	über Anschlussklemmen				
Anschluss an Basismodul	über proprietäre	en 5-Wege-Bus			

22,5 mm

HHHH

HHHE

Tab. 7-13 Modul 485EPR04S00B - 485EPR04S08B

7.2 Mechanische Abmessungen

Fig. 7-1 Mechanische Abmessungen

7.3 Signalisierungen

7.3.1 Basismodul 485EPB

elobau 😍 🕯	[LED				
s e n s o r technology ON RUN		BEDEUTUNG	RUN GRÜN	IN FAIL ROT	EXT FAIL ROT	COM ORANGE	ENA BLAU	IN1-8 GELB	OSSD1/2 ROT/GRÜN	CLEAR1/2 GELB	STATUS1/2 GELB
IN EXT		Einschalten - Eingangstest	ON	ON	ON	ON	ON	ON	Rot	ON	ON
FAIL COM ENA		Erfasster Speicherstick (350EPS)	OFF	OFF	OFF	ON (max. 1 s)	ON (max. 1 s)	OFF	Rot	OFF	OFF
485EPB		Laden der Konfiguration vom Speicherstick 350EPS	OFF	OFF	OFF	5-maliges Blinken	5-maliges Blinken	OFF	Rot	OFF	OFF
1 2 IN 3 4		Konfigurationssoftware fordert Verbindung an: interne Konfiguration ungültig oder nicht vorhanden	OFF	OFF	OFF	Langsames Blinken	OFF	OFF	Rot	OFF	OFF
7 8		Konfigurationssoftware fordert Verbindung an: Slavemodule oder Knotennummer nicht korrekt	OFF	OFF	OFF	Schnelles Blinken	OFF	OFF	Rot	OFF	OFF
1 2 OSSD 1 2 CLEAR 2		Konfigurationssoftware fordert Verbindung an: Slavemodule nicht vorhanden oder nicht bereit	Schnelles Blinken	OFF	OFF	Schnelles Blinken	OFF	OFF	Rot	OFF	OFF
1 2 STATUS		Konfigurationssoftware angeschlossen, 485EPB gestoppt	OFF	OFF	OFF	ON	OFF	OFF	Rot	OFF	OFF

eloProg Tab. 7-12 Ausgangsansicht

Fig. 7-2 Basismodul 485EPB

elobau 🕑

					LED				
BEDEUTUNG	RUN GRÜN	IN FAIL ROT	EXT FAIL COM ROT ORANGE		IN1÷8 GELB	ENA BLAU	OSSD1/2 ROT/GRÜN	CLEAR1/2 GELB	STATUS1/2 GELB
NORMALBETRIEB	ON	OFF	OFF Funktion OK	ON = an PC angeschlossen OFF= keine Verbindung	Zustand INPUT	ON MASTER_ENABLE1 MASTER_ENABLE2 aktiv	ROT bei Ausgang OFF	ON in Erwartung auf RESTART	Zustand
EXTERNES PROBLEM ERFASST	ON	OFF	ON falschen exter- nen Anschluss erfasst	ON = 485EPB an PC angeschlossen OFF = keine Verbindung	Es blinkt nur die Nummer des INPUTS mit dem falschen Anschluss	OFF MASTER_ENABLE1 MASTER_ENABLE2 nicht aktiv	GRÜN bei Ausgang ON	Blinkend KEIN Feedback	OUTPUT

Tab. 7-13 Dynamische Ansicht

7.3.2 Ein-/Ausgangsmodul 485EPE08A02

elobau 🗸	e , °					LED							
s e n s o r techn ON	ology RUN	BEDEUTUNG	RUN IN I GRÜN R	FAIL OT	EXT FAIL ROT	SEL ORANGE	IN1-8 GELB	OSSD1/2 ROT/GRÜN	CLEAR1/2 GELB	STATUS1/2 GELB			
IN	EXT	Einschalten - Eingangstest	ON C	N	ON	ON	ON	Rot	ON	ON			
FAIL O SEL	1	Tab. 7-14 Ausgangsa	-14 Ausgangsansicht										
485EPE08/	A02					LED							
IN 1	2	BEDEUTUNG	RUN GRÜN	IN FAIL ROT	EXT FAIL ROT	IN1÷8 GELB	SEL ORANGE	OSSD1/2 ROT/GRÜN	CLEAR1/2 GELB	STATUS1/2 GELB			
5	4 6 8		OFF wenn das Modul die erste Kommunikation vom MASTER abwartet		OFF	Zustand INPUT		ROT bei Ausgang	ON				
OSSD ¹ CLEAR ¹	2	NORMALBETRIEB	BLINKEND wenn die Konfiguration keine Ein- oder Ausgänge erfordert ON wenn die Konfiguration Ein- oder Ausgänge erfordert	OFF	ON falschen exter- nen Anschluss erfasst	Es blinkt nur die Nummer des INPUTS mit dem falschen Anschluss	Führt die Tabell der Signale NODE_SEL 0/*	e OFF GRÜN bei Ausgang ON	auf RESTART BLINKEND KEIN Feedback	Zustand OUTPUT			
status ¹ eloPro	g	Tab. 7-15 Dynamisch	e Ansicht	<u> </u>	1	1	1]	1	<u> </u>			

Fig. 7-3 Ein-/Ausgangsmodul 485EPE08A02

7.3.3 Eingangsmodul 485EPE08

elobau) *					LED		
sensor technol ON F	logy RUN	BEDEUTUNG	RUN GRÜN	IN F	FAIL ROT	EXT FAIL ROT	SEL ORANGE	IN1-8 GELB
IN	EXT	Einschalten - Eingangstest	ON	(ON	ON	ON	ON
FAIL O SEL	1	Tab. 7-16 Ausgangsansicht						
485EPE0	8					LED		
IN 1	2	BEDEUTUNG	RUN GRÜN		IN FAIL ROT	EXT FAIL ROT	SEL ORANGE	IN1-8 GELB
5	4 6 8		OFF wenn das Modul die erste Kommunikation vom MASTE abwartet	ĒR		OFF		Zustand INPUT
		NORMALBETRIEB	BLINKEND wenn die Konfiguration kein I oder OUTPUT erfordert ON wenn die Konfiguration INPU OUTPUT erfordert	INPUT JT oder	OFF	ON falschen externen Anschluss erfasst	Führt die Tabelle der Signale NODE_SEL 0/1	Es blinkt nur die INPUT- Nummer mit dem falschen Anschluss
eloProg	9	Tab. 7-17 Dynamische Ansicht						

Fig. 7-4 Eingangsmodul 485EPE08

7.3.4 Eingangsmodul 485EPE12

elobau 🤄	e _*				LED		
sensor techno ON	ology RUN	BEDEUTUNG	RUN GRÜN	IN FAIL ROT	EXT FAIL ROT	SEL ORANGE	IN1÷12 GELB
IN	EXT	Einschalten - Eingangstest	ON	ON	ON	ON	ON
FAIL O SEL	1	Tab. 7-18 Ausgangsansicht					
485EPE1	12				LED		
1 IN 3	2	BEDEUTUNG	RUN GRÜN	IN FAIL ROT	EXT FAIL ROT	SEL ORANGE	IN1÷12 GELB
5	6		OFF wenn das Modul die erste Kommunikation vom MASTER abwartet		OFF		Zustand INPUT
9	10 12	NORMALBETRIEB	BLINKEND wenn die Konfiguration kein INPUT oder OUTPUT erfordert ON wenn die Konfiguration INPUT oder OUTPUT erfordert	OFF	ON falschen externen Anschluss erfasst	Führt die Tabelle der Signale NODE_SEL0/1	Es blinkt nur die INPUT- Nummer mit dem falschen Anschluss
eloProg	J	Tab. 7-19 Dynamische Ansicht	1	1	1	1	

Fig. 7-5 Eingangsmodul 485EPE12

7.3.5 Eingangsmodul 485EPE16

elobau 😍 °				LED		
sensor technology ON RUN	BEDEUTUNG	RUN GRÜN	IN FAIL ROT	EXT FAIL ROT	SEL ORANGE	IN1-16 GELB
IN EXT	Einschalten - Eingangstest	ON	ON	ON	ON	ON
FAIL O 1 SEL	Tab. 7-20 Ausgangsansicht					
485EPE16				LED		
1 2 IN	BEDEUTUNG	RUN GRÜN	IN FAIL ROT	EXT FAIL ROT	SEL ORANGE	IN1-16 GELB
3 4		OFF				
5 6 7 8		wenn das Modul die erste Kommunikation vom MASTER abwartet		OFF		Zustand INPUT
9 10	NORMALBETRIEB	BLINKEND wenn die Konfiguration kein INPUT oder OUTPUT erfordert	OFF	ON	Führt die Tabelle der Signale NODE_SEL 0/1	Es blinkt nur die INPUT-
11 12		ON wenn die Konfiguration INPUT oder OUTPUT erfordert		falschen externen Anschluss erfasst		Nummer mit dem falschen Anschluss
15 16	Tab. 7-21 Dynamische Ansicht					
eloProg						

Fig. 7-6 Eingangsmodul 485EPE16

7.3.6 Ausgangsmodul 485EPA02

elobau 😍 °						LED			
s e n s o r technology ON RUN	BEDEUTUNG	RUN GRÜN	IN FA RO	AIL T	EXT FAIL ROT	SEL ORANGE	OSSD1/2 ROT/GRÜN	CLEAR1/2 GELB	STATUS1/2 GELB
IN EXT	Einschalten - Eingangstest	ON	ON	1	ON	ON	Rot	ON	ON
FAIL 0 1 SEL	Tab. 7-22 Ausgangsansicht								
485EPA02						LED			
	BEDEUTUNG	RUN GRÜN		IN FAIL ROT	EXT FAIL ROT	SEL ORANGE	OSSD1/2 ROT/GRÜN	CLEAR1/2 GELB	STATUS1/2 GELB
		OFF wenn das Modul die erste Kommunikation vom MASTER abwartet					ROT bei Ausgang OFF	ON in Erwartung auf RESTART	
OSSD ¹ 2 CLEAR ¹ 2	NORMALBETRIEB	BLINKEND wenn die Konfigurati INPUT oder OUTPU erfordert ON wenn die Konfigurati oder OUTPUT erford	ion kein IT on INPUT	OFF Funktion OK	OFF Funktion OK	Führt die Tabe der Signale NODE_SEL 0	lle 1 GRÜN bei Ausgang ON	BLINKEND KEIN Feedback	Zustand OUTPUT
eloProg	Tab. 7-23 Dynamische Ansicht			1	<u> </u>		I	1	LJ

Fig. 7-7 Ausgangsmodul 485EPA02

7.3.7 Ausgangsmodul 485EPA04

elobau 😍 °							LED				
s e n s o r technology ON RUN	BEDEUT	ſUNG	RUN GRÜN	IN FA RO	AIL T	EXT FAIL ROT	SEL ORANGE	OSSD1/4 ROT/GRÜ	4 JN	CLEAR1/4 GELB	STATUS1/4 GELB
IN EXT	Einscha	lten - Eingangstest	ON	ON	1	ON	ON	Rot		ON	ON
FAIL O 1 SEL	Tab. 7	2-24 Ausgangsansicht									
485EPA04							LED				
1 2	BEDEUT	ſUNG	RUN GRÜN		IN FAIL ROT	EXT FAIL ROT	SEL ORANG	E RO	SSD1/4 T/GRÜN	CLEAR1/4 GELB	STATUS1/4 GELB
OSSD ¹ ² CLEAR ¹ ²			OFF wenn das Modul die er Kommunikation vom M. abwartet	rste ASTER				bei /	ROT Ausgang OFF	ON in Erwartung auf RESTART	
OSSD ³ ⁴ CLEAR ³ ⁴	NORMA	LBETRIEB	BLINKEND wenn die Konfiguration kein INPUT oder OUTPUT erfordert ON wenn die Konfiguration INPUT oder OUTPUT oferdert		OFF Funktion OK	OFF Funktion OK	Führt die Ta der Signa NODE_SEI	abelle ale _ 0/1 C bei /	GRÜN Ausgang ON	BLINKEND KEIN Feedback	Zustand OUTPUT
eloProg	Tab. 7	2-25 Dynamische Ansicht	1		1		1	I		1	

Fig. 7-8 Ausgangsmodul 485EPA04

7.3.8 Modul 485EPR04S00B

elobau v	e , *					LEC)			
sensor techn		BEDEUTUNG	RUN	IN F/	AIL	EXT FAIL	SEL 0/1	RELA	Y1/4	CLEAR1/4
ON	NON		GRÜN	RO	т	ROT	ORANGE	ROT	GRÜN	GELB
IN FAIL	EXT	Einschalten - Eingangstest	ON	10	N	ON	ON	Ro	t	ON
SEL 0	1	Tab. 7-26 Ausgangsansicht								
485EPR049	500B									
	2					LED)			
RELAT 1	2	BEDEUTUNG	RUN		IN FAIL	EXT FAIL	SEL0/1	RELAY1/4		CLEAR1/4
CLEAR			GRÜN		ROT	ROT	ORANGE	ROT	GRÜN	GELB
RELAY 3 CLEAR	4		OFF wenn das Modul die erste Kommunikation vom MAS abwartet	TER				R mit Schlie	ROT eßerkontakt	ON in Erwartung auf RESTART
		NORMALBETRIEB	BLINKEND wenn die Konfiguration kei oder OUTPUT vom Modul	n INPUT erfordert	OFF Funktionsweise OK	OFF Funktionsweise OK	Führt die Tabelle der Signale NODE_SEL0/1 auf	GI	RÜN	BLINKEND
			ON wenn die Konfiguration IN oder OUTPUT vom Modul	PUT erfordert				mit Öffr	nerkontakt	KEIN Feedback
eloPro	g	Tab. 7-27 Dynamische Ansicht	•			1		1		

Fig. 7-9 Modul 485EPR04S00B

7.3.9 Modul 485EPR04S08B

elobau	¢°					LED				
sensortech ON	nology RUN	BEDEUTUNG	RUN IN FAI	L EXT	FAIL	SEL0/1	RELAY1/4	. (CLEAR1/4	STATUS1/8
			GRÜN ROT	F	ют	ORANGE	ROT GR	ÜN	GELB	GELB
FAIL	EXT	Einschalten - Eingangstest	ON ON	(ИС	ON	Rot		ON	ON
SEL	1	Tab. 7-28 Ausgangsans	icht							
485EPR04	SO8B									
1 RELAY	2					LED				
1 CLEAR	2	BEDEUTUNG	RUN	IN FAIL	EXT FAIL	SEL0/1	REL	AY1/4	CLEAR1/4	STATUS1/8
3	4		GRÜN	ROT	ROT	ORANGE	ROT	GRÜN	GELB	GELB
CLEAR STATUS	4 2		OFF wenn das Modul die erste Kommunikation vom MASTER abwartet			Führt die Tabelle	R mit Schlie	OT ßerkontakt	ON in Erwartung auf RESTART	
STATUS STATUS	4 6	NORMALBETRIEB	BLINKEND wenn die Konfiguration kein INPUT oder OUTPUT vom Modul erfordert	OFF Funktionsweise OK	OFF Funktionsweise OK	der Signale NODE_SEL0/1 auf	GF	RÜN	BLINKEND	Zustand OUTPUT
STATUS	8		ON wenn die Konfiguration INPUT oder OUTPUT vom Modul erfordert				mit Öffn	erkontakt	KEIN Feedback	
elopro	y	Tab 7-20 Dynamische	Ansicht							

Tab. 7-29 Dynamische Ansicht

Fig. 7-10 Modul 485EPR04S08B

7.3.10 Modul 485EPA00S08

elobau	e °				LED		
sensortech ON	nology RUN	BEDEUTUNG	RUN IN FA	IL EX	TFAIL	SEL0/1	STATUS1/8
			GRÜN ROT	r 🔤	ROT	ORANGE	GELB
		Einschalten - Eingangstest	ON ON		ON	ON	ON
0 SEL 🗆	1 □	Tab. 7-30 Ausgangsansi	cht				
485EPA00	S08						
1 STATUS 🗆	2		Γ				
3	4				LED	1	
ū		BEDEUTUNG	RUN	IN FAIL	EXT FAIL	SEL 0/1	STATUS 1/8
5	6		GRÜN	ROT	ROT	ORANGE	GELB
7	8		OFF wenn das Modul die erste Kommunikation vom MASTER abwartet				
		NORMALBETRIEB	BLINKEND wenn die Konfiguration kein INPUT oder OUTPUT vom Modul erfordert	OFF Funktionsweise OK	OFF Funktionsweise OK	Führt die Tabelle der Signale NODE_SEL0/1 auf	Zustand OUTPUT
eloPro	n		ON wenn die Konfiguration INPUT oder OUTPUT vom Modul erfordert				

Tab. 7-31 Dynamische Ansicht

Fig. 7-11 Modul 485EPA00S08

elobau 🕑

7.3.11 Modul 485EPA00S16

elobau	٩				LED		
sensortech ON	nology RUN	BEDEUTUNG	RUN IN FAI	L EX	T FAIL	SEL0/1	STATUS1/16
			GRÜN ROT	I	ROT	ORANGE	GELB
		Einschalten - Eingangstest	ON ON		ON	ON	ON
0 SEL 🗆	1 □	Tab. 7-32 Ausgangs	ansicht	·	·	·	
485EPA00	S16						
	2						
STATUS L	4				LED		
3	4	BEDEUTUNG	RUN	IN FAIL	EXT FAIL	SEL 0/1	STATUS 1/16
5	6		GRÜN	ROT	ROT	ORANGE	GELB
7 □ 9	8 □ 10		OFF wenn das Modul die erste Kommunikation vom MASTER				
			abwartet	055	055	Extended Table 11-	
11	12 □	NORMALBETRIEB	BLINKEND	OFF Funktionsweise	OFF Funktionsweise	der Signale	Zustand
13 □	14 □		wenn die Konfiguration kein INPUT oder OUTPUT vom Modul erfordert	OK	OK	NODE_SEL0/1 auf	OUTPUT
eloPro	16 □		ON wenn die Konfiguration INPUT oder OUTPUT vom Modul erfordert				

Tab. 7-33 Dynamische Ansicht

Fig. 7-12 Modul 485EPA00S16

7.3.12 Module 485EPS2N, 485EPS1, 485EPS2

elobau 🔮 °	elobau	e °						LED			
sensortechnology ON RUN	sensortech DN	nology RUN	BEDEUTUNG	ON	RUN	IN FAIL	EXT FAIL	SEL	ENC*	PROX	SH
	IN	EVT		GRÜN	GRÜN	ROT	ROT	ORANGE	GELB	GELB	GELB
FAIL	FAIL	EAT	Einschalten - Eingangstest	ON	ON	ON	ON	ON	ON	ON	ON
0 1 SEL	0 SEL	1	Tab. 7-34 Ausgangsansi	cht	· · · · ·				·		
485EPS1	485EP	S2	0.0								
	1	ENC						LED			
	╞╴┍┛	2	BEDEUTUNG	ON	RUN	IN FAIL	EXT FAIL	SEL	ENC*	PROX	SH
				GRÜN	GRÜN	ROT	ROT	ORANGE	GELB	GELB	GELB
ENC 1		ENC 1			OFF wenn das Modul die erste Kommunikation von MASTER abwartet						OFF Achse im normalen Geschwindigkeits- bereich
1 2 PROX 1 2 SH ^{1 2}	PROX SH	2	NORMALBETRIEB	ON Modul versorgt	BLINKEND wenn die Konfiguration kein INPUT oder OUTPUT vom Modul erfordert	OFF Funktions- weise OK	OFF Funktions- weise OK	Führt die Tabelle der Signale NODE_SEL0/1 auf	ON Encoder angeschlos- sen und in Betrieb	ON Initiator angeschlos- sen und in Betrieb	ON Achse im Stillstand
eloProg Fig. 7-13 Mo 485EPS2N, 4	eloPro dule 185EPS1	og			ON wenn die Konfiguration INPUT oder OUTPUT vom Modul erfordert						BLINKEND Achse im Überdreh- zahlbereich
1955002	,		Tab. 7-35 Dvnamische A	nsicht							

485EPS2

Tab. 7-35 Dynamische Ansicht

* auf Modul 485EPS2N nicht vorhanden

7.3.13 Relaisausgangsmodule 485EPR02/485EPR04

elobau 😍 °	elobau 🔮 °		LE	D
s e n s o r technology	s e n s o r technology	BEDEUTUNG	OSS	D1
			ROT/G	RÜN
		Einschalten - Eingangstest	Ro	ot
		Tab. 7-36 485EPR02 Ausgangsansich	nt	
485EPR02	485EPR04			
		DEDEUTINO	LE	
		BEDEUTUNG	055	
			ROT/G	RUN
		NORMALBETRIEB	ROT mit Ausgang OFF -	GRÜN mit Ausgang ON
		Tab. 7-37 485EPR02 Dynamische An	sicht	D
	1 2	BEDEUTUNG	OSSD1	OSSD2
HELAT	HELAY		ROT/GRÜN	ROT/GRÜN
		Einschalten - Eingangstest	Rot	Rot
		Tab. 7-38 485EPR04 Ausgangsansich	nt	
eloProg	eloProg			
			IF	n

Fig. 7-14 Relaisausgangsmodule 485EPR02/485EPR04

	LE	D				
BEDEUTUNG	OSSD1	OSSD2				
	ROT/GRÜN	ROT/GRÜN				
NORMALBETRIEB	ROT mit Ausgang OFF - GRÜN mit Ausgang ON					

Tab. 7-39 485EPR04 Dynamische Ansicht

7.3.14 Modul 485EPA02S08

elobau	e.	Γ						LED				
sensor tech ON	nology RUN		BEDEUTUNG	RUN IN	FAIL	EXT	FAIL	SEL0/1	OSSD1/	4	CLEAR1/4	STATUS1/8
				GRÜN F	ют	R	от	ORANGE F	ют с	RÜN	GELB	GELB
			Einschalten - Eingangstest	ON	NC	(N	ON	Rot		ON	ON
0 SEL □	1 □		Tab. 7-40 Ausgangsansi	cht								
485EPA02	S08											
1 OSSD □	2 □	Γ						LED				
1 CLEAR □	2		BEDEUTUNG	RUN		IN FAIL	EXT FAIL	SEL0/1	0	SSD1/4	CLEAR1/4	STATUS1/8
	4			GRÜN		ROT	ROT	ORANGE	ROT	GRÜN	GELB	GELB
CLEAR D STATUS D	4 □ 2 □			OFF wenn das Modul die erste Kommunikation vom MASTER abwartet				Führt die Tehelle	mit Sch	ROT ießerkontakt	ON in Erwartung auf RESTART	ON der zugeordnete SYSTEM STATUS-
3 STATUS □ 5 STATUS □	4 □ 6 □		NORMALBETRIEB	BLINKEND wenn die Konfiguration kein INP oder OUTPUT vom Modul erfor	UT dert	OFF Funktionsweise OK	OFF Funktionsweise OK	der Signale NODE_SEL0/1 auf			BLINKEND	Ausgang ist aktiv OFF der zugeordnete
status ⁷ eloPro	8 □			ON wenn die Konfiguration INPUT oder OUTPUT vom Modul erfor	dert				GRÜN mit Öffnerkontakt		Feedback externe Schütze falsch	SYSTEM STATUS- Ausgang ist nicht aktiv

Tab. 7-41 Dynamische Ansicht

Fig. 7-15 Modul 485EPA02S08

7.4 Fehlerdiagnose

7.4.1 Basismodul 485EPB

elobau 🔇	au 😍 🔋 LED												
sensor techno	ology		BEDEUTUNG	RUN	IN FAIL	EXT FAIL	СОМ	IN1-8	ENA	OSSD1/2	CLEAR1/2	STATUS1/2	ABHILFE
ON	RUN			GRÜN	ROT	ROT	ORANGE	GELB	BLAU	ROT/GRÜN	GELB	GELB	
IN FAIL COM	EXT ENA		Interner Defekt	OFF	2- oder 3- maliges Blinken	OFF	OFF	OFF	OFF	Rot	OFF	OFF	Das Modul ersetzen
485EPE	3 2		Konfigurationsfehler	OFF	5-maliges Blinken	OFF	OFF	5-maliges Blinken	OFF	5-maliges Blinken	5-maliges Blinken	5-maliges Blinken	 Das Projekt erneut laden. Bleibt das Problem bestehen, Modul ersetzen
IN 3 5 7	4 6 8		Fehler OSSD-Ausgänge	OFF	4-maliges Blinken	OFF	OFF	OFF	OFF	4-maliges Blinken (nur die LED des Ausgangs, der sich im Fehler-Modus befindet)	OFF	OFF	 Anschlüsse OSSD1/2 kontrollieren Bleibt das Problem bestehen, Modul ersetzen
, 1	2		Fehler Kommunikation mit Slave	OFF	5-maliges Blinken	OFF	OFF	OFF	OFF	OFF	OFF	OFF	Das System wieder startenBleibt das Problem bestehen, Modul ersetzen
CLEAR CLEAR STATUS	2		Fehler Slavemodul	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF	OFF	 Das System wieder starten Kontrollieren, welches Modul sich in <i>FAIL</i> befindet
eloPro	g		Fehler Speicherstick	OFF	6-maliges Blinken	OFF	6-maliges Blinken	OFF	OFF	OFF	OFF	OFF	Speicherstick ersetzen

Fig. 7-16 Basismodul 485EPB

7.4.2 Ein-/Ausgangsmodul 485EPE08A02

elobau	e°										
sensor tech	nology	BEDEUTUNG	RUN	IN FAIL	EXT FAIL	SEL	IN1-8	OSSD1/2	CLEAR1/2	STATUS1/2	ABHILFE
ON	RUN		GRÜN	ROT	ROT	ORANGE	GELB	ROT/GRÜN	GELB	GELB	
FAIL SEL	EXT 1	Interner Defekt	OFF	2- oder 3-maliges Blinken	OFF		OFF	Rot	OFF	OFF	Das Modul ersetzen
485EPE08	2 0A8	Kompatibilitätsfehler	OFF	5-maliges Blinken	OFF		5-maliges Blinken	5-maliges Blinken	5-maliges Blinken	5-maliges Blinken	 Firmware-Version nicht mit Basismodul kompatibel, zur Aktualisierung der FW bei elobau einsenden
3 5 7	4 6 8	Fehler OSSD-Ausgänge	OFF	4-maliges Blinken	OFF	Gibt die Adresse des Moduls an	OFF	4-maliges Blinken (nur die LED des Ausgangs, der sich im Fehler- Modus befindet)	OFF	OFF	 Anschlüsse OSSD1/2 kontrollieren Bleibt das Problem bestehen, Modul ersetzen
OSSD 1	2	Fehler Kommunikation mit Master	OFF	5-maliges Blinken	OFF		OFF	OFF	OFF	OFF	 Das System wieder starten Bleibt das Problem bestehen, Modul ersetzen
CLEAR 1 STATUS	2	Fehler auf anderem Slave oder Basismodul	OFF	ON	OFF		OFF	OFF	OFF	OFF	 Das System wieder starten Kontrollieren, welches Modul sich in <i>FAIL</i> befindet
eloPro	og	Anderen Slave desselben Typs mit derselben Adresse erfasst	OFF	5-maliges Blinken	5-maliges Blinken		OFF	OFF	OFF	OFF	Die Adresse des Moduls ändern (siehe Kap. 6.1.2 NODE SEL auf Seite 6-1)

Fig. 7-17 Ein-/ Ausgangsmodul 485EPE08A02 Tab. 7-43 Diagnostik 485EPE08A02

7.4.3 Eingangsmodul 485EPE08

elobau v	e, °										
s e n s o r techr	nology	BEDEUTUNG	RUN	IN FAIL	EXT FAIL	SEL	IN1-8	OSSD1/2	CLEAR1/2	STATUS1/2	ABHILFE
ON	RUN		GRÜN	ROT	ROT	ORANGE	GELB	ROT/GRÜN	GELB	GELB	
FAIL O	EXT 1	Interner Defekt	OFF	2- oder 3-maliges Blinken	OFF		OFF	Rot	OFF	OFF	Das Modul ersetzen
485EPE	08 2	Kompatibilitätsfehler	OFF	5-maliges Blinken	OFF		5-maliges Blinken	5-maliges Blinken	5-maliges Blinken	5-maliges Blinken	 Firmware-Version nicht mit Basismodul kompatibel, zur Aktualisierung der FW bei elobau einsenden
3 5	4 6	Fehler Kommunikation mit Master	OFF	5-maliges Blinken	OFF	Gibt die Adresse des Moduls an	OFF	OFF	OFF	OFF	 Das System wieder starten Bleibt das Problem bestehen, Modul ersetzen
7	8	Fehler auf anderem Slave oder Basismodul	OFF	ON	OFF		OFF	OFF	OFF	OFF	 Das System wieder starten Kontrollieren, welches Modul sich in <i>FAIL</i> befindet
		Anderen Slave desselben Typs mit derselben Adresse erfasst	OFF	5-maliges Blinken	5-maliges Blinken		OFF	OFF	OFF	OFF	Die Adresse des Moduls ändern (siehe Kap. 6.1.2 NODE SEL auf Seite 6-1)

Tab. 7-44 Diagnostik 485EPE08

eloProg

Fig. 7-18 Eingangsmodul 485EPE08

7.4.4 Eingangsmodul 485EPE12

elobau v	e).										
sensor techn	ology	BEDEUTUNG	RUN	IN FAIL	EXT FAIL	SEL	IN1÷12	OSSD1/2	CLEAR1/2	STATUS1/2	ABHILFE
UN	RUN		GRÜN	ROT	ROT	ORANGE	GELB	ROT/GRÜN	GELB	GELB	
FAIL O	EXT 1	Interner Defekt	OFF	2- oder 3-maliges Blinken	OFF		OFF	Rot	OFF	OFF	Das Modul zur Reparatur bei elobau einsenden
485EPE	12 2	Kompatibilitätsfehler	OFF	5-maliges Blinken	OFF		5-maliges Blinken	5-maliges Blinken	5-maliges Blinken	5-maliges Blinken	 Firmware-Version nicht mit 485EPB kompatibel, zur Aktualisierung der FW bei elobau einsenden
3 5 7	4 6 8	Fehler Kommunikation mit Master	OFF	5-maliges Blinken	OFF	Gibt die Adresse des Moduls an	OFF	OFF	OFF	OFF	 Das System wieder starten Bleibt das Problem bestehen, 485EPE12 bei elobau zur Reparatur einsenden
9 11	10 12	Fehler auf anderem Slave oder Basismodul	OFF	ON	OFF		OFF	OFF	OFF	OFF	 Das System wieder starten Kontrollieren, welches Modul sich in <i>FAIL</i> befindet
		Anderen Slave desselben Typs mit derselben Adresse erfasst	OFF	5-maliges Blinken	5-maliges Blinken		OFF	OFF	OFF	OFF	Die Adresse des Moduls ändern (siehe Kap. 6.1.2 NODE SEL auf Seite 6-1)

Tab. 7-45 Diagnostik 485EPE12

Fig. 7-19 Eingangsmodul 485EPE12

eloProg

7.4.5 Eingangsmodul 485EPE16

elob	au	e °	
36130	ON	RUN	
FAIL	IN	EXT	
SEL	0	1	
485	EP	E16	
IN	1	2	
	3	4	
	5	6	
	7	8	
	9	10	
	11	12	
	13	14	
	15	16	
elc	Pr	og	

					LED				
BEDEUTUNG	RUN	IN FAIL	EXT FAIL	SEL	IN1÷16	OSSD1/2	CLEAR1/2	STATUS1/2	ABHILFE
	GRÜN	ROT	ROT	ORANGE	GELB	GELB ROT/GRÜN		GELB	
Interner Defekt	OFF	2- oder 3-maliges Blinken	OFF		OFF	Rot	OFF	OFF	Das Modul ersetzen
Kompatibilitätsfehler	OFF	5-maliges Blinken	OFF		5-maliges Blinken	5-maliges Blinken	5-maliges Blinken	5-maliges Blinken	 Firmware-Version nicht mit Basismodul kompatibel, zur Aktualisierung der FW bei elobau einsenden
Fehler Kommunikation mit Master	OFF	5-maliges Blinken	OFF	Gibt die Adresse des Moduls an	OFF	OFF	OFF	OFF	 Das System wieder starten Bleibt das Problem bestehen, Modul ersetzen
Fehler auf anderem Slave oder Basismodul	OFF	ON	OFF		OFF	OFF	OFF	OFF	 Das System wieder starten Kontrollieren, welches Modul sich in <i>FAIL</i> befindet
Anderen Slave desselben Typs mit derselben Adresse erfasst	OFF	5-maliges Blinken	5-maliges Blinken		OFF	OFF	OFF	OFF	Die Adresse des Moduls ändern (siehe Kap. 6.1.2 NODE SEL auf Seite 6-1)

Tab. 7-46 Diagnostik 485EPE16

Fig. 7-20 Eingangsmodul 485EPE16

7.4.6 Ausgangsmodule 485EPA02/485EPA04

elobau 🔮 °	elobau 🕑	þ									
s e n s o r technology	s e n s o r technology	/	BEDEUTUNG	RUN	IN FAIL	EXT FAIL	SEL	OSSD1/4	CLEAR1/2	STATUS1/2	ABHILFE
ON RUN	ON RUI	N		GRÜN	ROT	ROT	ORANGE	ROT/GRÜN	GELB	GELB	
FAIL FAIL O 1	FAIL IN EX	Т	Interner Defekt	OFF	2- oder 3-maliges Blinken	OFF		Rot	OFF	OFF	Das Modul ersetzen
485EPA02	485EPA04		Kompatibilitätsfehler	OFF	5-maliges Blinken	OFF		5-maliges Blinken	5-maliges Blinken	5-maliges Blinken	 Firmware-Version nicht mit Basismodul kompatibel, zur Aktualisierung der FW bei elobau einsenden
	OSSD 1 2 CLEAR 1 2 STATUS 1 2		Fehler OSSD-Ausgänge	OFF	4-maliges Blinken	OFF	Gibt die Adresse des Moduls an	4-maliges Blinken (nur die LED des Ausgangs, der sich im Fehler-Modus befindet)	OFF	OFF	 Anschlüsse OSSD1/2 kontrollieren Bleibt das Problem bestehen, Modul ersetzen
12 OSSD	34 OSSD		Fehler Kommunikation mit Master	OFF	5-maliges Blinken	OFF		OFF	OFF	OFF	 Das System wieder starten Bleibt das Problem bestehen, Modul ersetzen
1 2 CLEAR 1 2	CLEAR 3 4		Fehler auf anderem Slave oder Basismodul	OFF	ON	OFF		OFF	OFF	OFF	 Das System wieder starten Kontrollieren, welches Modul sich in <i>FAIL</i> befindet
eloProg	eloProg		Anderen Slave desselben Typs mit derselben Adresse erfasst	OFF	5-maliges Blinken	5-maliges Blinken		OFF	OFF	OFF	Die Adresse des Moduls ändern (siehe Kap. 6.1.2 NODE SEL auf Seite 6-1)

Fig. 7-21 Ausgangsmodule 485EPA02/485EPA04

Tab. 7-47 Diagnostik 485EPA02/485EPA04

7.4.7 Modul 485EPR04S00B

elobau 🔮 🔭										
s e n s o r technology		BEDEUTUNG	RUN	IN FAIL	EXT FAIL	SEL0/1	RELA	Y1/4	CLEAR1/4	ABHILFE
ON RUN			GRÜN	ROT	ROT	ORANGE	ROT	GRÜN	GELB	
FAIL SEL		Interner Defekt	OFF	2- oder 3-maliges Blinken	OFF		R	ot	OFF	 Das Modul zur Reparatur bei elobau einsenden
485EPRO4SOOB 1 2 RELAY		Kompatibilitätsfehler	OFF	5-maliges Blinken	OFF		5-maliges	Blinken	5-maliges Blinken	 Firmware-Version nicht mit 485EPB kompatibel, zur Aktualisie- rung der FW bei elobau einsenden
CLEAR CLEAR RELAY 3 4		Fehler Relaisausgänge	OFF	4-maliges Blinken	OFF		4-maliges Blinken (nur die LED des Ausgangs, der sich im Fehler-Modus befindet)		OFF	 Bleibt das Problem bestehen, 485EPR04S00B bei elobau zur Reparatur einsenden
CLEAR		Fehler Kommunikation mit Master	OFF	5-maliges Blinken	OFF	Gibt die Adresse des Moduls an	OF	FF OFF		 Das System wieder starten Bleibt das Problem bestehen, 485EPE08A02 bei elobau zur Reparatur einsenden
		Fehler auf anderem Slave oder auf 485EPB	OFF	ON	OFF		OF	F	OFF	 Das System wieder starten Kontrollieren, welches Modul sich in <i>FAIL</i> befindet
eloProg		Anderen Slave desselben Typs mit derselben Adresse erfasst	OFF	5-maliges Blinken	5-maliges Blinken		OF	F	OFF	Die Adresse des Moduls ändern (siehe Kap. 6.1.2 NODE SEL auf Seite 6-1)
Fig. 7-22 Mod 485EPR04S00	lul)B	Kein externes Fbk auf Relais der Kategorie 4	ON	OFF	4-maliges Blinken		4-maliges (nur die LED de der sich im F befin	Blinken es Ausgangs, ehler-Modus idet)	OFF	Anschlüsse 5, 6, 7, 8 kontrollieren
		Fehler im Knotenerfassungs- kreis	OFF	3-maliges Blinken	OFF	3-maliges Blinken	OF	F	OFF	 Interner Defekt, zur Reparatur bei elobau einsenden

Tab. 7-48 Diagnostik 485EPR04S00B

7.4.8 Modul 485EPR04S08B

elobau 👻 *		LED														
s e n s o r technology	BEDEUTUNG	RUN	IN FAIL	EXT FAIL	SEL0/1	REL	AY1/4	CLEAR1/4	STATUS1/8	ABHILFE						
ON RUN		GRÜN	ROT	ROT	ORANGE	ROT	GRÜN	GELB	GELB							
FAIL D 1 SEL	Interner Defekt	OFF	2- oder 3-maliges Blinken	OFF		R	ot	OFF		Das Modul zur Reparatur bei elobau einsenden						
485EPR04S08B 1 2 RELAY	Kompatibilitätsfehler	OFF	5-maliges Blinken	OFF		5-malige	s Blinken	5-maliges Blinken	5-maliges Blinken	 Firmware-Version nicht mit 485EPB kompatibel, zur Aktualisierung der FW bei elobau einsenden 						
1 2 CLEAR RELAY CLEAR	Fehler Relaisausgänge	OFF	4-maliges Blinken	OFF		4-malige (nur die Ausgangs im Fehle befin	4-maliges Blinken (nur die LED des Ausgangs, der sich im Fehler-Modus befindet)		4-maliges Blinken (nur die LED des Ausgangs, der sich im Fehler-Modus befindet)		OFF	 Bleibt das Problem bestehen, 485EPR04S08B bei elobau zur Reparatur einsenden 				
1 2 STATUS 3 4 STATUS 5 6	Fehler Kommunikation mit Master	OFF	5-maliges Blinken	OFF	Gibt die Adresse des Moduls an	OFF		OFF	OFF	 Das System wieder starten Bleibt das Problem bestehen, 485EPE08A02 bei elobau zur Reparatur einsenden 						
STATUS 7 8 STATUS	Fehler auf anderem Slave oder auf 485EPB	OFF	ON	OFF		0	OFF		OFF	 Das System wieder starten Kontrollieren, welches Modul sich in <i>FAIL</i> befindet 						
eloProg Fig. 7-23 Modul	Anderen Slave desselben Typs mit derselben Adresse erfasst	OFF	5-maliges Blinken	5-maliges Blinken		0	FF	OFF	OFF	Die Adresse des Moduls ändern (siehe Kap. 6.1.2 NODE SEL auf Seite 6-1)						
485EPR04S08B	Kein externes Fbk auf Relais der Kategorie 4	ON	OFF	4-maliges Blinken		4-maliges Blink (nur die LED des Ausg sich im Fehler-Modus		ken gangs, der s befindet)	OFF	Anschlüsse 5, 6, 7, 8 kontrollieren						
	Fehler im Knotenerfas- sungskreis	OFF	3-maliges Blinken	OFF	3-maliges Blinken	OFF		OFF		OFF		OFF		OFF	OFF	Interner Defekt, zur Reparatur bei elobau einsenden
	Kurzschluss oder Überlast erkannt	OFF	3-maliges Blinken	OFF	3-maliges Blinken	OFF		OFF		OFF		OFF	Blinken	 Anschlüsse der Ausgänge kontrollieren 		

Tab. 7-49 Diagnostik 485EPR04S08B

7.4.9 Modul 485EPA00S08

elobau 😍 🕯					LED			
sensor technology ON RUN		BEDEUTUNG	RUN IN FAIL EXT FAIL SEI		SEL0/1	STATUS1/8	ABHILFE	
			GRÜN	ROT	ROT	ORANGE	GELB	
IN EXT FAIL D 0 1 SEL D		Interner Defekt	OFF	2- oder 3-maliges Blinken	OFF		OFF	Das Modul zur Reparatur bei elobau einsenden
485EPA00S08 1 2 STATUS □ □		Kompatibilitätsfehler	OFF	5-maliges Blinken	OFF		5-maliges Blinken	 Firmware-Version nicht mit 485EPA00S08 kompatibel, zur Aktualisierung der FW bei elobau einsenden
3 4 		Fehler Kommunikation mit Master	OFF	5-maliges Blinken	OFF	Gibt die Adresse des Moduls an	OFF	 Das System wieder starten Bleibt das Problem bestehen, 485EPA00S08 bei elobau zur Reparatur einsenden
7 8 □ □		Fehler auf anderem Slave oder auf 485EPA00S08	OFF	ON	OFF		OFF	Das System wieder startenKontrollieren, welches Modul sich in <i>FAIL</i> befindet
		Anderen Slave desselben Typs mit derselben Adresse erfasst	OFF	5-maliges Blinken	5-maliges Blinken		OFF	Die Adresse des Moduls ändern (siehe Kap. 6.1.2 NODE SEL auf Seite 6-1)
		Fehler auf Knotenerfas- sungskreis	OFF	3-maliges Blinken	OFF	3-maliges Blinken	OFF	 Interner Defekt, zur Reparatur bei elobau einsenden
eloProg		Kurzschluss oder Überlast auf Status Output 1-8	OFF	OFF	ON	OFF	Blinken	Anschlüsse der Ausgänge 1-8 kontrollieren
Fig. 7-24 Modul 485EPA00S08		Stromversorgung fehlt am Statusausgang 1-8	OFF	OFF	ON	OFF	Blinkt abwechselnd	PIN 5 an die Stromversorgung anschließen

Tab. 7-50 Diagnostik 485EPA00S08

7.4.10 Modul 485EPA00S16

alahau	,e ,*				
sensor tech	noloav				
ON □	RUN				
IN FAIL 🗆	EXT D				
0 SEL 🗆	1 □				
485EPA00S16					
1 STATUS □	2 □				
3 □	4 □				
5	6 □				
7	8 □				
9	10 □				
11 □	12 □				
13 □	14 □				
15 □	16 □				
eloPro	og				

1 r

Fig. 7-25 Modul 485EPA00S16

			LEC)			
BEDEUTUNG	RUN IN FAIL EXT FAIL		EXT FAIL	SEL0/1	STATUS1/8	STATUS9/16	ABHILFE
	GRÜN	ROT	ROT	ORANGE	GELB	GELB	
Interner Defekt	OFF	2- oder 3-maliges Blinken	OFF		OFF	OFF	Das Modul zur Reparatur bei elobau einsenden
Kompatibilitätsfehler	OFF	5-maliges Blinken	OFF		5-maliges Blinken	5-maliges Blinken	 Firmware-Version nicht mit 485EPA00S16 kompatibel, zur Aktualisierung der FW bei elobau einsenden
Fehler Kommunikation mit Master	OFF	5-maliges Blinken	OFF	Gibt die Adresse des Moduls an	OFF	OFF	 Das System wieder starten Bleibt das Problem bestehen, 485EPA00S16 bei elobau zur Reparatur einsenden
Fehler auf anderem Slave oder auf 485EPA00S16	OFF	ON	OFF		OFF	OFF	 Das System wieder starten Kontrollieren, welches Modul sich in <i>FAIL</i> befindet
Anderen Slave desselben Typs mit derselben Adresse erfasst	OFF	5-maliges Blinken	5-maliges Blinken		OFF	OFF	Die Adresse des Moduls ändern (siehe Kap. 6.1.2 NODE SEL auf Seite 6-1)
Fehler auf Knotenerfas- sungskreis	OFF	3-maliges Blinken	OFF	3-maliges Blinken	OFF	OFF	Interner Defekt, zur Reparatur bei elobau einsenden
Kurzschluss oder Überlast auf Status Output 1-8	OFF	OFF	ON	OFF	Blinken	OFF	Anschlüsse der Ausgänge 1-8 kontrollieren
Kurzschluss oder Überlast auf Status Output 9-16	OFF	OFF	ON	OFF	OFF	Blinken	Anschlüsse der Ausgänge 9-16 kontrollieren
Stromversorgung fehlt am Statusausgang 1-8	OFF	OFF	ON	OFF	Blinkt abwechselnd	OFF	PIN 5 an die Stromversorgung anschließen
Stromversorgung fehlt am Statusausgang 9-16	OFF	OFF	ON	OFF	OFF	Blinkt abwechselnd	PIN 6 an die Stromversorgung anschließen

Tab. 7-51 Diagnostik 485EPA00S16

7.4.11 Module 485EPS2N, 485EPS1, 485EPS2

elobau 👻 🕯 elobau 🍨 sensor technology ON RUN sensor technology ON RUN IN EXT EXT IN FAIL FAIL 1 0 0 1 SEL SEL 485EPS2 485EPS1 ENG 2 ENC EN 1 1 2 1 2 1 PROX PROX 2 1 2 1 SH SH eloProg eloProg

9		LED							
	BEDEUTUNG	RUN	IN FAIL EXT FAIL		SEL	ENC*	PROX	SH	ABHILFE
		GRÜN	ROT	ROT	ORANGE	GELB	GELB	GELB	
Т	Interner Defekt	OFF	2- oder 3-maliges Blinken	OFF		OFF	OFF	OFF	Das Modul zur Reparatur bei elobau einsenden
с	Kompatibilitätsfehler	OFF	5-maliges Blinken	OFF		OFF	OFF	OFF	 Firmware-Version nicht mit 485EPB kompatibel, zur Aktuali- sierung der FW bei elobau einsenden
	Encoder ist/sind konfiguriert, aber nicht angeschlossen	OFF	ON OFF Gibt Adress Modul		Gibt die Adresse des Moduls an	ON	OFF	OFF	Den Encoder an das Modul anschließen
С	Funktionsstörung Initiator	OFF	OFF	ON		OFF	BLINKT 2 s	OFF	Initiator wechseln
	Proximity ist nicht ange- schlossen, wird aber von der Konfiguration erfordert	OFF	OFF	ON		OFF	BLINKT 0,5 s	OFF	 Initiator an das Modul anschließen
	Anderen Slave desselben Typs mit derselben Adresse erfasst	OFF	5-maliges Blinken	5-maliges Blinken		OFF	OFF	OFF	Die Adresse des Moduls ändern (siehe Kap. 6.1.2 NODE SEL auf Seite 6-1)
	Fehler im Knotenerfas- sungskreis	OFF	OFF	OFF	3-maliges Blinken	OFF	OFF	BLINK.	 Interner Defekt, zur Reparatur bei elobau einsenden

485EPS1, 485EPS2

Fig. 7-26 Module 485EPS2N, Tab. 7-52 Diagnostik 485EPS2N, 485EPS1, 485EPS2

* auf Modul 485EPS2N nicht vorhanden

7.4.12 Modul 485EPA02S08

elobau 🐑					
sensor tech	nology				
ON □	RUN				
IN FAIL 🗆	EXT D				
0 SEL 🗆	1 □				
485EPA02	S08				
1 OSSD □	2 □				
1 CLEAR □	2 □				
3 OSSD □	4 □				
3 CLEAR □	4 □				
1 STATUS □	2 □				
3 STATUS □	4 □				
5 STATUS □	6 □				
7 STATUS □	8 □				
eloPro	ba				

Fig. 7-27 Modul

485EPA02S08

BEDEUTUNG RUN IN FAIL EXT FAIL **SEL0/1 OSSD 1/4** CLEAR1/4 STATUS1/8 ABHILFE GRÜN ROT ROT ORANGE ROT GRÜN GELB GEI B 2- oder Das Modul zur Reparatur bei elobau OFF 3-maliges OFF Interner Defekt Rot OFF einsenden Blinken Firmware-Version nicht mit 485EPA 5-maliges 5-maliges 5-maliges OFF OFF Kompatibilitätsfehler 5-maliges Blinken kompatibel, zur Aktualisierung der Blinken Blinken Blinken FW bei elobau einsenden 4-maliges Blinken (nur die LED des Bleibt das Problem bestehen. 4-maliges OFF OFF OFF OFF Fehler OSSD-Ausgänge Ausgangs, der sich 485EPA02S08 bei elobau zur Blinken im Fehler-Modus Reparatur einsenden befindet) Das System wieder starten Fehler Kommunikation 5-maliges Bleibt das Problem bestehen. OFF OFF OFF OFF OFF Blinken 485EPA02S08 bei elobau zur mit Master Reparatur einsenden Gibt die Adresse des Das System wieder starten Fehler auf anderem Slave OFF OFF ON Moduls an OFF OFF OFF Kontrollieren, welches Modul sich in oder auf 485EPA02S08 FAIL befindet Anderen Slave desselben Die Adresse des Moduls ändern 5-maliges 5-maliges OFF Typs mit derselben Adresse OFF OFF OFF (siehe Kap. 6.1.2 NODE SEL auf Blinken Blinken erfasst Seite 6-1) Kurzschluss oder Überlast Die Verbindung der Statusausgänge ON OFF ON **OUTPUT-Status** CLEAR: blinkend auf Statusausgang erfasst überprüfen Blinkt (nur die LED des Überlast OSSD oder Last an OUTPUT-Die Verbindung der OSSD-Ausgänge ON OFF ON OFF Ausgangs, der sich 24VDC angeschlossen Status überprüfen im Fehler-Modus befindet) OSSD3/ OSSD3/OSSD4 OUTPUT-Unterbrochene Stromver-OSSD4 ON OFF ON PIN14 an 24VDC anschließen sorgung OSSD3-OSSD4 blinkend Status blinkend Fehler auf Knotenerfas-3-maliges Das Modul zur Reparatur bei elobau 3-maliges OFF OFF OFF OFF OFF sungskreis Blinken Blinken einsenden

LED

Tab. 7-53 Diagnostik 485EPA02S08

8 KONFIGURATIONSSOFTWARE

Die Konfigurationssoftware *"eloProg 350EPKS"* ermöglicht die Konfiguration einer Logik für die an die eloProg-Module angeschlossenen Sicherheitsbauteile/Bauteile.

eloProg überwacht und steuert somit die angeschlossenen Bauteile/Komponenten.

Über eine graphische Schnittstelle (Benutzeroberfläche) ist die Konfigurationssoftware in der Lage, die verschiedenen Bauteile miteinander zu verbinden.

8.1 Installation der Software

8.1.1 Hardwarevoraussetzungen für den PC

- RAM-Speicher: 256 485EPF (ausreichend für den Betrieb von *Windows XP SP3* + *Framework 4.0*)
- Festplatte: Freier Speicherplatz \geq 500 MB
- USB-Anschluss: 1.1, 2.0 oder 3.0
- CD-ROM-Lesegerät

8.1.2 Softwarevoraussetzungen für den PC

Windows XP mit installiertem Service Pack 3 (oder höher).

Hinweis

Auf dem Computer muss Microsoft Framework 4.0 (oder höher) vorhanden sein.

8.1.3 Wie die Konfigurationssoftware installiert wird

- Die Installations-CD einlegen;
- Abwarten, bis das selbst startende Installationsprogramm den SETUP der SW verlangt;

Alternativ zum Verzeichnis D:/ wechseln;

• Doppelklick auf die Datei eloProgSetup.exe

Nach der Installation erscheint ein Fenster zum Schließen des Setup-Programms.

elobau 🕑

8.1.4 Allgemeines

Wurde die Installation korrekt abgeschlossen, erscheint ein Symbol auf dem Desktop. Zum Starten des Programms auf dieses Symbol doppelklicken.

Es erscheint die folgende Benutzeroberfläche:

Gegenstaende		
Gegenstaende		
		Eigenschaft
) Input		
Output		
output		
Hinweise		
Operator	Ĩ	
operator		
Logiken		
) Speicher		
Zaebler		
) zacinci		
) Timer		
Muting		
Konfiguration		
		Visuelle Konfig

Fig. 8-1 Benutzeroberfläche

Ab hier kann der Bediener mit der Erstellung von Projekten beginnen.

8.1.5 Standard-Symbolleiste

In *Fig.* 8-2 wird die Standard-Symbolleiste dargestellt und im Anschluss die Bedeutung der Symbole aufgelistet:

1->	Ē	NEUES PROJEKT ERSTELLEN
2 ->	0	KONFIGURATION ÄNDERN (Zusammensetzung der verschiedenen Module)
3 ->	2	BENUTZERNAME ÄNDERN (Name, Unternehmen usw.)
4 ->		PROJEKT SPEICHERN
5 ->		EIN BESTEHENDES PROJEKT LADEN
6 ->	3	PROJEKTPLAN DRUCKEN
7 ->	2	DRUCKVORSCHAU
8 ->	A	DRUCKBEREICH
9 ->	1	REPORT DRUCKEN
10 ->	-	UNDO (LÖSCHUNG DES LETZTEN BEFEHLS)
11 ->	-	REDO (WIEDERHERSTELLUNG DER LETZTEN LÖSCHUNG)
12 ->	~	VALIDIERUNG DES PROJEKTS
13 ->	5	VERBINDUNG MIT eloProg
14 ->		PROJEKT AN eloProg SENDEN
15 ->	0	VERBINDUNG MIT eloProg UNTERBRECHEN
16 ->	4	EIN BESTEHENDES PROJEKT LADEN (vom Basismodul)
17 ->		MONITOR (Status der I/O in Echtzeit - graphisch)
18 ->		MONITOR (Status der I/O in Echtzeit - textlich)
19 ->		PROTOKOLL - DATEIEN LADEN
20 ->	-	SYSTEMKONFIGURATION ANZEIGEN
21 ->	-	DOWNLOAD FEHLERPROTOKOLL
22 ->	X	LÖSCHEN FEHLERPROTOKOLL
23 ->	- D-	PLANSIMULATION
24 ->	۲	GRAFISCHE SIMULATION
25 ->	3	KENNWORT ÄNDERN
26 ->	0	ONLINE HILFE
27 ->	2	KENNWORT WIEDERGEWINNUNG

🏢 eloProg Safety Designer: Projekt elobau 🕙 🚡 🗟 🖳 🖆 🚔 🐼 📝 😓 🖘 🗸 🌫 🥷 🔕 🍕 🔯 🔍 Deutsch (Deutschland) 🗸 Firma - Name 🥥

Fig. 8-2 Standard-Symbolleiste

8.1.6 Text-Symbolleiste

Optional kann die Text-Symbolleiste verwendet werden (Drop-Down-Menü).

Datei Projekt Aenderung Kommunikation Optionen ?

Fig. 8-3 Text-Symbolleiste

8.1.7 Erstellen eines neuen Projekts

Durch Auswählen dieses Symbols in der Standard-Symbolleiste erstellen Sie ein neues Projekt. Es erscheint ein Dialogfeld zur Eingabe der Projektdaten (siehe *Fig. 8-4 Identifizierung des Benutzers*).

Fig. 8-4 Identifizierung des Benutzers

Die Konfigurationssoftware öffnet ein Fenster, in dem zunächst nur das Basismodul erscheint. Der Benutzer hat die Möglichkeit, die erforderlichen Module unter Verwendung des Pull-Down-Menüs und des entsprechenden Knotens 0-3 (Menü unten) zu seinem System hinzuzufügen.

- 1 Firmware-Version gemäß Angabe auf dem Label des Basismoduls auswählen
 - 'n
- 2 Slave-Module auswählen (die zur Konfiguration hinzugefügt werden sollen)
- Fig. 8-5 Module hinzufügen

- 3 Auswahl des Knotens (zwischen 0 und 3)
- 4 Deaktiviert das Lesen aus dem Speicherstick
8.1.8 Konfiguration ändern (Zusammensetzung der verschiedenen Module)

Das Ändern der Systemkonfiguration erfolgt über dieses Symbol.

Es erscheint erneut das Konfigurationsfenster.

8.1.9 Benutzerparameter ändern

Das Ändern der Benutzerparameter erfolgt über dieses Symbol.

Es erscheint die Aufforderung zur Identifizierung des Benutzers (siehe *Fig.* 8-6). Für diesen Vorgang ist es nicht erforderlich, die Verbindung mit eloProg zu unterbrechen. Es wird im Allgemeinen verwendet, wenn ein neuer Benutzer ein neues Projekt erstellt oder ein zuvor erstelltes verwendet.

Gegenstaende					
🥪 Input	Projektinformationen				
 ✓ Output ✓ Hinweise 	Unternehmen	Unternehmen			
	Benutzer	Name			
	Projektname	Project			
		Ok Annullieren			

Fig. 8-6 Identifizierung des Benutzers

8.1.10 Symbolleisten Objekte - Operatoren - Konfiguration

Auf der linken und rechten Seite des Hauptfensters erscheinen 4 große Funktionsfenster (siehe *Fig.* 8-7 *Symbolleisten Objekte - Operatoren - Konfiguration*).

Fig. 8-7 Symbolleisten Objekte - Operatoren - Konfiguration

elobau 🕑

1 Funktionsfenster Objekte

Enthält die unterschiedlichen Funktionsbausteine.

- Diese Funktionsbausteine sind in 4 unterschiedliche Kategorien unterteilt:
- Geschwindigkeitskontrolle (Speed Monitoring)
- Eingang
- Ausgang
- Hinweis

2 Funktionsfenster Operatoren

Enthält die unterschiedlichen Funktionsbausteine, die die Komponenten miteinander verbinden. Diese Funktionsbausteine sind in 7 unterschiedliche Kategorien unterteilt:

- Logik
- Speicher
- Safety Guard Lock (Zuhaltung)
- Zähler
- Timerbausteine
- Muting
- Diverse

3 Funktionsfenster Konfiguration

Enthält die Beschreibung der Zusammensetzung der verschiedenen Module des Projekts.

4 Funktionsfenster Visuelle Konfiguration

Enthält die graphische Darstellung der Zusammensetzung der verschiedenen Module des Projekts.

8.1.11 Erstellen des Diagramms (Konfiguration)

Nach Auswahl des Systemaufbaus kann das Projekt konfiguriert werden.

Das Diagramm wird mit DRAG&DROP realisiert:

- Das gewünschte Objekt wird aus den zuvor beschriebenen Fenstern ausgewählt (in den folgenden Absätzen folgen detaillierte Erklärungen für jedes einzelne Objekt) und in den Zeichnungsbereich gezogen.
- Anschließend wird durch Auswählen des Objekts das Fenster **EIGENSCHAFTEN** aktiviert und die Felder je nach den erforderlichen Eigenschaften ausgefüllt.
- Ist es erforderlich, einen spezifischen numerischen Wert mit einem Schieberegler einzugeben (z.B. Filter), die Pfeiltasten Bild auf und Bild ab auf der Tastatur verwenden oder auf die Seiten des Cursors des Schiebegleiters klicken.
- Die Verbindungen unter den Objekten erfolgen, indem die Maus über den gewünschten Pin gebracht und dieser zu dem zu verbindenden Objekt gezogen wird.
- Soll ein Objekt dupliziert werden, dieses auswählen und durch CTRL+C/CTRL+V kopieren
- Soll ein Objekt oder eine Verbindung gelöscht werden, diese auswählen und die Taste ENTF auf der Tastatur betätigen.
- Wenn das Schaltbild sehr komplex und eine Verbindung zwischen zwei sehr weit auseinanderliegenden Elementen erforderlich ist, die Komponente "Interpage" verwenden.

Fig. 8-8 Komponente Interpage

• Für eine aufgelöste Verbindung mittels Interpage-Funktion sind für die Ausgänge (*Interpage Out*) und die Eingänge (*Interpage In*) jeweils die gleichen Namen zu verwenden.

elobau 🕑

ON BLOCK INPUT / OUTPUT

- Kopieren / Einfügen
- Löschen
- · Löschen aller belegten Pins
- Ausrichtung mit anderen Funktionsbausteinen (Mehrfachauswahl)
- Online-Hilfe
- Monitor-Modus: Show / Hide Eigenschaften-Fenster
- Der Funktionsbaustein Status: Pin-Eingang aktivieren / deaktivieren logische Negation

ON BLOCK BETREIBER

- Kopieren / Einfügen
- Löschen
- Ausrichtung mit anderen Funktionsbausteinen (Mehrfachauswahl)
- Online-Hilfe
- Am Eingang Pin: aktivieren / deaktivieren logische Negation
- · Monitor-Modus: Show / Hide Eigenschaften-Fenster

AN DEN KLEMMEN

• Ausrichtung mit anderen Funktionsbausteinen

ON VERBINDUNG (LEITUNGEN)

- Löschen
- Anzeige des vollständigen Netzwerkpfades der Verbindung

1 Objekt in den Zeichnungsbereich ziehen

3 Startpunkt der Verbindung

2 Objekteigenschaften

Fig. 8-9 Erstellen des Diagramms

8.1.12 Projektbeispiel

In *Fig.* 8-10 ist ein Projektbeispiel dargestellt, in dem an das Basismodul 2 Sicherheitsbauteile angeschlossen sind: E-GATE (zweikanalige, bewegliche trennende Schutzeinrichtung) und E-STOP (Not-Halt-Taster).

Links sind in gelber Farbe die Eingänge (1, 2, 3) dargestellt, an die die Kontakte der Sicherheitsbauteile angeschlossen werden. Die Ausgänge (1 bis 4) werden gemäß der in E-GATE und E-STOP gewählten Bedingungen aktiviert (siehe *Kap. E-GATE (Bewegliche trennende Schutzeinrichtungen, zweikanalig) auf Seite 8-27* und *Kap. E-STOP (Not-Halt, ein- und zweikanalig) auf Seite 8-25*).

Wird ein Grafikblock mit einem Mausklick ausgewählt, wird rechts das Fenster EIGENSCHAFTEN aktiviert, mit dessen Hilfe die Parameter für die Aktivierung und der Test der Blöcke konfiguriert werden (siehe Kap. E-GATE (Bewegliche trennende Schutzeinrichtungen, zweikanalig) auf Seite 8-27 und Kap. E-STOP (Not-Halt, ein- und zweikanalig) auf Seite 8-25).

Fig. 8-10 Projektbeispiel

Nach Abschluss der Projektierungsphase (oder während der Zwischenphasen) kann die aktuelle Konfiguration über das Symbol **SPEICHERN** in der Standard-Symbolleiste gespeichert werden.

Validierung des Projekts

Hinweis

Das abgeschlossene Projekt muss nun überprüft werden. Daher den Befehl **VALIDIERUNG** ausführen (dieses Symbol in der Standard-Symbolleiste).

Nur wenn die Validierung positiv verläuft, kann die Konfiguration übermittelt werden.

Warnung

Mit der Validierungsfunktion wird nur die Übereinstimmung der Programmierung im Vergleich zu den Merkmalen des eloProg Systems überprüft. Diese Validierung garantiert daher nicht, dass die Programmierung den Sicherheitsvoraussetzungen der Anwendung entspricht.

elobau 🕑

=> 📝

Report des Projekts

Drucken der System-Zusammensetzung mit den Eigenschaften eines jeden Blocks (dieses Symbol in der Standard-Symbolleiste).

Fig. 8-11 Report drucken

Warnung

- Dieses Berechnungsergebnis des PL und der anderen zugehörigen Parameter gemäß ISO 13849-1 bezieht sich nur auf die auf dem eloProg System anhand der Konfigurationssoftware eloProg implementierten Funktionen und setzt voraus, dass die Konfiguration korrekt vorgenommen wurde.
- Um den tatsächlichen PL der gesamten Anwendung und die damit verbundenen Parameter zu erhalten, müssen die Daten in Bezug auf alle im Rahmen der Anwendung an das eloProg System angeschlossenen Geräte berücksichtigt werden.
- Diese Aufgabe liegt allein in der Verantwortung des Benutzers/Installateurs.

Verbindung mit eloProg

Kennwort eingeben

Nachdem das Basismodul 485EPB mit dem USB-Kabel (350EPU) an den PC angeschlossen wurde, über dieses Symbol die Verbindung herstellen.

Es erscheint ein Fenster zur Kennwortabfrage. Das Kennwort eingeben (siehe Kap. 8.1.13 Kennwortschutz auf Seite 8-14).

Fig. 8-12 Kennwortabfrage

Konfiguration an eloProg senden

C Ebene1 C Ebene2 Kennwort

Für die Übertragung der gespeicherten Konfiguration vom PC auf das Basismodul, dieses Symbol in der Standard-Symbolleiste verwenden und die Ausführung abwarten. Das Basismodul speichert das Projekt in seinem internen Speicher und (wenn vorhanden) im Speicher 350EPS (Kennwort Ebene 2).

Hinweis

Die vorliegende Funktion ist nur nach der Validierung des Projekts möglich.

Herunterladen einer Konfiguration (Projekt) vom eloProg Basismodul

Zum Laden eines auf dem Basismodul 485EPB vorhandenen Projekts dieses Symbol auf der Standard-Symbolleiste verwenden und die Ausführung abwarten. Das vorhandene Projekt wird angezeigt (Kennwort Ebene 1).

- Wird das Projekt auf anderen 485EPB-Modulen verwendet, die tatsächlich angeschlossenen Bauteile überprüfen (siehe Kap. Systemaufbau auf Seite 8-11).
- Dann eine "Validierung des Projekts" (siehe *Kap. Validierung des Projekts auf Seite 8-8*) und anschließend einen "System-Test" (siehe *Kap. System-Test auf Seite 8-15*) durchführen.

LOG der Konfigurationen

Hinweis

- In der Konfigurationsdatei (Projekt) befinden sich die Erstellungsdaten und der CRC (Identifizierung mit 4 Hexadezimalziffern) des Projekts, die im Basismodul gespeichert werden (siehe *Fig. 8-13 LOG-Datei*). Dadurch lassen sich nachträgliche Änderungen an der Konfiguration nachvollziehen (Manipulationsschutz).
- Dieses Logfile kann maximal 5 Ereignisse nacheinander aufzeichnen. Anschließend wird das Register beginnend mit dem ältesten Ereignis überschrieben.

Die LOG-Datei wird unter Verwendung dieses Symbols im Standardmenü eingeblendet (Kennwort Ebene 1).

Datum	CRC	
09/11/10	1AECH	
09/11/10	C670H	
09/11/10	FF12H	
09/11/10	C670H	
09/11/10	1AECH	

Fig. 8-13 LOG-Datei

Systemaufbau

Der aktuelle Aufbau des eloProg Systems kann über dieses Symbol geprüft werden (Kennwort Ebene 1).

Es erscheint eine Tabelle mit:

- den angeschlossenen Modulen;
- der Firmware-Version jedes Moduls;
- der Knotennummer (Adresse) jedes Moduls.

Module anerkannt	Firmware-Version installiert	Notizen		
Modul EPB	1.0	EPS nicht vorhanden		
Modul EPE08A02 Knoten: 0	0.4			
FieldBus	1.0	Modul PROFIBUS DPV1		

Fig. 8-14 Systemaufbau

Wenn Module als falsch erkannt wurden, wird folgendes Fenster angezeigt: z.B., Knotennummer EPE08A02 falsch (angezeigt in roter Schrift).

Module anerkannt	Firmware-Version installiert	Notizen	Module erforderlich	Minimale Firmware-Version Erforderliche
Modul EPB	1.0	EPS nicht vorhanden	Modul EPB	
Modul EPE08A02 Knoten: 0	0.4		Modul EPE08A02 Knoten: 1	0.1
FieldBus	1.0	Modul PROFIBUS DPV1		

Fig. 8-15 Anzeige - Falsches Modul erkannt

mung und wird nicht aktiviert (siehe Kap. 7.3 Signalisierungen auf Seite 7-7).

Trennen des Systems

tragenen Projekt neu.

Hinweis

MONITOR (Status der I/O in Echtzeit - Text)

Um die Funktion MONITOR zu aktivieren, dieses Symbol verwenden (Kennwort Ebene 1).

Es erscheint eine Tabelle (siehe Fig. 8-16) in Echtzeit mit:

 dem Status der Eingänge (falls das angeschlossene Bauteil 2 oder mehr Eingänge an der eloProg belegt, wird nur der erste Eingang als aktiv hervorgehoben); siehe Beispiel in *Fig. 8-16*;

Ist das System nicht aus allen von der Konfiguration vorgesehenen Modulen zusammengesetzt, signalisiert das Basismodul nach dem Abschalten die mangelnde Übereinstim-

Zum Trennen der Verbindung des PC mit dem Basismodul dieses Symbol verwenden.

Nach Trennen der Verbindung wird das System zurückgesetzt und startet mit dem über-

- Diagnose der Eingänge;
- Status der OSSDs;
- Diagnose der OSSDs;
- Status der digitalen Ausgänge;
- Diagnose der Test-Ausgänge.

									1.112222 2.2					
Modul	block	Тур	INPUT	Staat	Diagnostik Eingänge	Module	OSSD	State	Diagnostik OSSD	Module	Status	Staat	DiagOutT	Diagnostik Dig-out
485EPB	1	Enable	IN1	OFF		485EPB	OSSD1	OFF			х		485EPB T1	
			IN2				х				X		485EPB T2	
			х			485 EP A04-0	OSSD2	OFF		485EPA04-0	STATUS1	OFF	485EPB T3	
485EPB	2	Enable	IN4	OFF		485EPA04-0	OSSD3	OFF		485EPA04-0	STATUS2	OFF	485EPB T4	
485EPB	3	Enable	IN5	OFF		485EPA04-0	OSSD4	OFF		485EPA04-0	STATUS3	OFF		
485EPB	4	Enable	ING	OFF		485EPA04-0	OSSD5	OFF		485EPA04-0	STATUS4	OFF		
485EPB	5	Enable	IN7	OFF								1		
485EPB	6	Enable	IN8	OFF										

Fig. 8-16 Funktion MONITOR

=> 🥘

elobau 🔮

MONITOR (Status der I/O in Echtzeit - Grafik)

Um die Funktion MONITOR zu aktivieren/deaktivieren, dieses Symbol verwenden (Kennwort Ebene 1).

Die Farbe der Verbindungslinie ändert sich in der Diagnoseansicht in Echtzeit mit:

ROT = AUS

GRÜN = AN

GESTRICHELT ORANGE = Externer Fehler (z.B. Sensor nicht richtig aktiviert) **GESTRICHELT ROT** = Warten auf Restart; Enable-Eingänge vom Basismodul nicht auf 24 VDC

Platzieren Sie den Mauszeiger über der entsprechenden Verbindungslinie, um die Diagnosemeldung sichtbar zu machen.

Hinweis Besondere Fälle

- NETWORK-OPERATOR, Signale NETWORK IN, OUT: DURCHGEHENDE LINIE FETT ROT = STOPP DURCHGEHENDE LINIE FETT GRÜN = LAUF DURCHGEHENDE LINIE FETT ORANGE = START OPERATOR SERIELLES OUTPUT:
- **DURCHGEHENDE LINIE FETT SCHWARZ = Datenübertragung**

8.1.13 Kennwortschutz

Laden und Speichern des Projekts werden durch Kennwortabfrage geschützt.

Hinweis

Die als Standard eingegebenen Kennwörter müssen geändert werden, um Manipulationen zu vermeiden (Kennwort Ebene 2) oder damit die in eloProg geladene Konfiguration nicht sichtbar ist (Kennwort Ebene 1).

Kennwort Ebene 1

Der Bediener, der mit dem System 485EPB arbeiten soll, muss das KENNWORT der Ebene 1 kennen.

Dieses Kennwort ermöglicht nur die Anzeige der LOG-Datei, des Systemaufbaus, des MONITORS in Echtzeit und der Ladevorgänge.

Bei der ersten Initialisierung des Systems muss der Bediener das Kennwort "" verwenden (Feld leer lassen, Taste ENTER drücken). Der Bediener, der das Kennwort der Ebene 2 kennt, kann ein neues Kennwort der Ebene 1 eingeben (alphanumerisch, max. 8 Zeichen).

Hinweis

Die Kenntnis dieses Kennworts erlaubt dem Bediener Vorgänge zu laden (485EPB auf PC), Ändern oder Speichern des Projekts.

Kennwort Ebene 2

Der Bediener, der das Projekt erstellt, muss das KENNWORT der Ebene 2 kennen. Bei der ersten Initialisierung des Systems muss der Bediener das Kennwort **"SAFEPASS**" verwenden (nur Großbuchstaben).

Der Bediener, der das Kennwort der Ebene 2 kennt, kann ein neues Kennwort der Ebene 2 eingeben (alphanumerisch, max. 8 Zeichen).

Hinweis

- Die Kenntnis dieses Kennworts erlaubt dem Bediener, Vorgänge zu laden (von PC auf 485EPB), Ändern oder das Speichern des Projekts.
- In der Phase des UPLOADS eines neuen Projekts kann das Kennwort der Ebene 2 geändert werden.
- Sollte eines der beiden Kennwörter vergessen werden, müssen Sie sich an elobau wenden, die eine Freigabedatei nur an den Systemplaner versendet. Wenn diese Datei installiert wird, wird in der Symbolleiste dieses Symbol angezeigt.

=> 🥝

Wenn das Symbol aktiviert ist, werden die Kennwörter der Ebene 1 und Ebene 2 auf ihre ursprünglichen Werte zurückgesetzt. Diese Kennwörter können nur einmal verwendet werden.

Kennwortänderung

Auf dieses Symbol klicken.

<u>Achtung:</u> Zuvor muss Zugriff auf die Ebene 2 erfolgt sein. Andernfalls Verbindung herstellen und Kennwort eingeben, siehe *Kap. Verbindung mit eloProg auf Seite 8-10*.

Es erscheint ein Fenster (siehe *Fig. 8-18*), das die Auswahl des zu ändernden Kennworts ermöglicht. Das alte und das neue Kennwort in die dafür vorgesehenen Felder eingeben (max. 8 Zeichen). OK anklicken.

Am Ende des Vorgangs die Verbindung trennen. Auf dieses Symbol klicken, um das System neu zu starten.

Liegt der Speicherstick vor, wird das neue Kennwort auch auf diesem gespeichert.

Fig. 8-18 Kennwortänderung

8.1.14 System-Test

Warnung

Nachdem das Projekt validiert und in das Basismodul geladen wurde und alle Sicherheitseinrichtungen angeschlossen wurden, ist das Durchführen des System-Tests erforderlich, um die korrekte Funktionsweise zu kontrollieren.

Der Bediener muss eine Statusänderung für alle an eloProg angeschlossenen Sicherheitsvorrichtungen herbeiführen, um die tatsächliche Änderung des Status der Ausgänge zu überprüfen. Das nachfolgende Beispiel dient der Veranschaulichung der System-Test-Vorgänge:

Fig. 8-19 System-Test

- (t1) Unter normalen Betriebsbedingungen (bewegliche trennende Schutzeinrichtung E-GATE physisch geschlossen), ist der Schließereingang INPUT 1 geschlossen, der Öffner-Eingang INPUT 2 geöffnet (Gültigkeitsbedingung des Funktionsbausteins erfüllt), wodurch auf dem Ausgang des Funktionsbausteins E-GATE logisch 1 (HIGH-Pegel) anliegt. Auf diese Weise sind die Sicherheitsausgänge (OSSD1/2) aktiv und auf den entsprechenden Klemmen liegen 24 VDC an;
- (t2) Wird die bewegliche trennende Schutzeinrichtung E-Gate physisch geöffnet, ändert sich der Zustand der Eingänge und folglich des Ausgangs des Funktionsbausteins E-GATE: (*Output* = 24 VDC → 0 VDC); der Zustand der Sicherheitsausgänge OSSD1 - OSSD2 wechselt von 24 VDC auf 0 VDC. Wird diese Änderung erfasst, ist die bewegliche Schutzeinrichtung E-GATE korrekt angeschlossen.

Fig. 8-20 Zustandsänderung der Ein-/Ausgänge E-GATE

Warnung

- Zur korrekten Installation aller externen Bauteile/Sensoren beziehen Sie sich auf die jeweiligen Installationsanleitungen.
- Diese Kontrolle muss für alle Sicherheitsbauteile ausgeführt werden, aus denen sich das Projekt zusammensetzt.

8.2 Funktionsbausteine

8.2.1 Ausgänge OUTPUT

OSSD (Halbleiter-Sicherheitsausgänge)

Die Sicherheitsausgänge OSSD erfordern keine Wartung, da sie eine (sichere) Halbleitertechnologie verwenden. *Output1* und *Output2* liefern 24 VDC, wenn sich *In* auf HIGH befindet, umgekehrt 0 VDC wenn sich *In* auf LOW befindet.

Hinweis

Jedes Paar OSSD-Ausgänge hat einen entsprechenden REST_FBK-Eingang. Dieser Eingang muss stets angeschlossen sein; siehe *Kap. 6.1.4 REST_FBK auf Seite 6-3*.

Parameter

Manueller Reset (Start): Diese Funktion aktiviert die Wiederanlaufsperre im Anschluss an jeden Ausfall des Signals auf dem Eingang *In*. Andernfalls folgt die Aktivierung des Ausgangs direkt dem Zustand des *Eingangs In* (automatischer Start).

Es gibt 2 Arten von Reset: *Manuell* und *Überwacht*. Wird die Option *Manuell* gewählt, wird nur der Übergang des Signals von 0 auf 1 überprüft. Im Fall von *Überwacht* wird der doppelte Übergang von 0 auf 1 und dann zurück auf 0 kontrolliert.

Verzögerungszeit K extern (nur bei automatischem Reset):

Diese Funktion ermöglicht die Überwachung eines Zeitfensters, innerhalb dessen das externe Feedback-Signal (z.B. von Schützen, Ventilen) erfolgen muss. Es wird dabei die Verzögerung von Setzen des Ausgangs *Output* (HIGH), bis zur Rückmeldung am Eingang FBK_RST (HIGH) überwacht. Die Zeit kann per Schieberegler im Bereich von 30ms bis 1300ms an die Reaktionszeit des externen Bauteils angepasst werden.

Andernfalls wechselt der Ausgang (*Output*) auf LOW und die erkannte Störung wird am Basis-Modul durch Blinken der entsprechenden LEDs angezeigt; siehe *Kap. Fehlerdiagnose*, *Kap. 7.4.1 Basismodul 485EPB auf Seite 7-22*.

Aktivierung Error Out:

Der Ausgang "ERROR" wird (falls aktiviert) HIGH, wenn von der Funktion "Verzögerungszeit K extern" ein Feedback-Fehler detektiert wird (siehe *Abschnitt Verzögerungszeit K extern Seite 8-17*).

- Der Ausgang ERROR wird LOW, wenn eine der folgenden Ereignisse eintritt:
- Ausschalten und anschließendes Wiedereinschalten des Systems
- Aktivierung des Funktionsbausteins "Reset System", siehe Beschreibung Funktionsbaustein RESET Seite 8-106

Beispiel eines OSSD-Ausgangs mit korrektem Feedback-Signal:

In diesem Fall ERROR OUT = False

Feedback-Signal (externe Zeit K überschritten): In diesem Fall ERROR OUT = True

Beispiel eines OSSD-Ausgangs mit falschem

SINGLE OSSD (Halbleiter-Sicherheitsausgänge)

Die Sicherheitsausgänge OSSD erfordern keine Wartung, da sie eine (sichere) Halbleitertechnologie verwenden.

Output1 und *Output2* liefern 24 VDC, wenn sich *In* auf HIGH befindet, umgekehrt 0 VDC wenn sich *In* auf LOW befindet.

Hinweis

Jedes Paar OSSD-Ausgänge hat einen entsprechenden REST_FBK-Eingang. Dieser Eingang muss stets angeschlossen sein; siehe *Kap. 6.1.4 REST_FBK auf Seite 6-3*.

Parameter

Ausgangstypen: Es kann unter zwei unterschiedlichen Ausgangstypen gewählt werden:

- Einzeln
- Doppelt

Unter Verwendung eines Modules 485EPA02S08 kann aus verschiedenen Konfigurationen ausgewählt werden:

- 1. Vier SINGLE OSSD-Funktionsbausteine (Einzelausgang), vier FBK-Eingänge
- 2. Zwei SINGLE OSSD-Funktionsbausteine (Doppelausgang), zwei FBK-Eingänge
- 3. Zwei SINGLE OSSD-Funktionsbausteine (Einzelausgang)
 - + ein SINGLE OSSD-Funktionsbaustein (Doppelausgang), drei FBK-Eingänge

Fig. 8-21 Projektbeispiel: Zwei Einzelausgangsblöcke + ein Doppelausgangsblock

Im Anschluss werden die möglichen Konfigurationen von 485EPA02S08 (2 oder 4 OSSD) dargestellt:

Konfiguration Einzelkanalausgänge (Kategorie 4)

Parameter

Manueller Reset (Start): Diese Funktion aktiviert die Wiederanlaufsperre im Anschluss an jeden Ausfall des Signals auf dem Eingang *In*. Andernfalls folgt die Aktivierung des Ausgangs direkt dem Zustand des *Eingangs In* (automatischer Start).

Es gibt 2 Arten von Reset: *Manuell* und *Überwacht*. Wird die Option *Manuell* gewählt, wird nur der Übergang des Signals von 0 auf 1 überprüft. Im Fall von *Überwacht* wird der doppelte Übergang von 0 auf 1 und dann zurück auf 0 kontrolliert.

Verzögerungszeit K extern (nur bei automatischem Reset):

Diese Funktion ermöglicht die Überwachung eines Zeitfensters, innerhalb dessen das externe Feedback-Signal (z.B. von Schützen, Ventilen) erfolgen muss. Es wird dabei die Verzögerung von Setzen des Ausgangs *Output* (HIGH), bis zur Rückmeldung am Eingang FBK_RST (HIGH) überwacht.

Die Zeit kann per Schieberegler im Bereich von 30ms bis 1300ms an die Reaktionszeit des externen Bauteils angepasst werden.

Andernfalls wechselt der Ausgang (*Output*) auf LOW und die erkannte Störung wird am Basis-Modul durch Blinken der entsprechenden LEDs angezeigt; siehe *Kap. 7.4 Fehlerdiagnose auf Seite 7-22*, *Fig. 7-16*.

Aktivierung Error Out:

Der Ausgang "ERROR" wird (falls aktiviert) HIGH, wenn von der Funktion "Verzögerungszeit K extern" ein Feedback-Fehler detektiert wird (siehe vorheriger *Abschnitt Verzögerungszeit K extern*).

Der Ausgang ERROR wird LOW, wenn eins der folgenden Ereignisse eintritt:

- Ausschalten und anschließendes Wiedereinschalten des Systems
- Aktivierung des Funktionsbausteins "Reset System", siehe Beschreibung Funktionsbaustein RESET Seite 8-106

Beispiel eines OSSD-Ausgangs mit korrektem Feedback-Signal: In diesem Fall ERROR OUT = False

Beispiel eines OSSD-Ausgangs mit falschem Feedback-Signal (externe Zeit K überschritten): In diesem Fall ERROR OUT = True

Statusausgang

Der Ausgang STATUS bietet die Möglichkeit, jeglichen Punkt der Schaltung (Konfiguration) zu überwachen, indem dieser mit dem Eingang *In* verbunden wird. Der Ausgang *Output* liefert im Ausgang 24 VDC, wenn *In* auf HIGH und umgekehrt 0 VDC wenn *In* auf LOW ist.

STATUS In Coutput	Eigenschaft STATUS Gegenstandbeschreibung
----------------------	---

Warnung

Der Ausgang STATUS ist kein Sicherheitsausgang.

FIELDBUS PROBE (Feldbussensor)

Ein Objekt, das die Anzeige des Status eines beliebigen Punkts der Schaltung an das Feldbussystem ermöglicht.

Es können höchstens 16 Sondenpunkte vergeben werden und für jede muss das Bit ausgewählt werden, auf dem der Status repräsentiert wird soll. Auf dem Feldbus werden dann die Status mit 2 Byte dargestellt.

(Detailliertere Informationen, siehe Anleitung der Feldbusse auf der CD-ROM eloProg)

Warnung

Der Ausgang PROBE ist kein Sicherheitsausgang.

RELAIS

Der Ausgangs-Funktionsbaustein *Relay* stellt einen Relaisausgang mit Schließerkontakt(en) dar. Der/die Relaisausgänge sind geschlossen, wenn der Eingang In = 1 entspricht (HIGH), andernfalls sind die Kontakte geöffnet (LOW).

Parameter

Kategorie: Es gibt 3 verschiedene Kategorien von Relaisausgängen:

Kategorie 1

Ausgänge mit einem Relais der Kategorie 1. Jedes Modul **485EPR04S00B/08B** kann bis zu max. 4 Ausgänge der Kategorie 1 aufweisen.

Eigenschaften:

- Interne Relais werden überwacht.
- EDM-Rückführung (Prüfung FBK 1-4) nicht verwendet (unnötig für Kategorie 1).
- Jeder Ausgang einstellbar: AUTO oder MANUELLER WIEDERANLAUF.

Beispiel mit externem Relais

Beispiel mit internem Relais

Kategorie 2

Ausgänge mit Einzelrelais der Kategorie 2 mit OTE-(Melde-) Ausgängen.

Jedes Modul 485EPR04S00B/08B kann max. 4 Ausgänge der Kategorie 2 aufweisen.

OTE: Der Ausgang OTE (Output Test Equipment = Ausgang des Testgerätes) ist beim Relais-Funktionsbaustein für Kategorie 2 automatisch aktiviert. Dieser Ausgang ist im Normalzustand 1 (HIGH).

Bei einem detektierten Fehler (intern oder am Feedback-Eingang der externen Schütze) ist der Ausgang 0 (LOW).

Eigenschaften:

- Interne Relais werden immer überwacht.
- Überwachung externer Schütze (K extern) am Feedback-(EDM-)Eingang
- Ausgang (Relais-Kontakt) ist konfigurierbar: Manueller oder automatischer Wiederanlauf (Reset). Die externe Schützüberwachung ist nur bei automatischem Reset möglich. Für den Fall, dass ein manueller Reset gewünscht wird, ist am Relaisbaustein der automatische Reset zu wählen und ein Funktionsbaustein für manuelle Wiederanlaufsperre (User Restart Manual/Monitored) vorzuschalten (siehe *Fig. 8-22 OUTPUT TEST EQUIPMENT OTE auf Seite 8-23*).

Output Test Equipment OTE

Der Ausgang OTE des (internen) Testgerätes ist bei Kategorie 2 automatisch aktiviert. Dieser Ausgang ermöglicht es, bei gefährlichen Ausfällen eine Meldung an die Maschinensteuerung (SPS) zu senden, mit dem Ziel, die gefahrbringende Bewegung zu stoppen oder zumindest dem Bediener den Fehler zu signalisieren.

elobau 🕑

Fig. 8-22 OUTPUT TEST EQUIPMENT OTE

Kategorie 4

Ausgänge mit doppelten Relais, entsprechend Kategorie 4. Mit diesem Ausgangsbaustein werden die Relais paarweise (zweikanalig) gesteuert. Jedes Modul 485EPR04S00B/08B kann max. 2 Ausgänge der Kategorie 4 aufweisen.

Eigenschaften:

- 2 Stück zweikanalige Ausgänge
- Interne Überwachung des Doppel-Relais
- Wiederanlauf einstellbar: Automatischer oder manueller Reset

Hinweis

Um eine Rückstufung des PL durch das Rechenergebnis zu vermeiden, müssen die Eingänge (Sensoren oder Sicherheitskomponenten) einer gleichwertigen oder höheren Kategorie entsprechen, als die anderen Geräte in der Kette.

Beispiel für Einsatz nur mit dem internen Relais und überwachten Magnetventilen

Beispiel für Einsatz mit externen Schützen mit Rückführung

Manueller Reset: Ist dies ausgewählt, wird die Wiederanlaufsperre im Anschluss an jeden Abfall des Signals am Eingang aktiviert. Andernfalls folgt die Aktivierung des Ausgangs direkt dem Zustand des Eingangs *In*.

Reset-Typ: Es gibt 2 Arten von Reset: *Manuell* und *Überwacht*. Wird die Option *Manuell* gewählt, wird nur der Übergang des Signals von 0 auf 1 überprüft. Im Fall von *Überwacht* wird der doppelte Übergang von 0 auf 1 und dann zurück auf 0 kontrolliert.

Status aktivieren: Wenn aktiviert, ist die Beschaltung der Relaisausgänge mit einem STATUS möglich (siehe *Kap. Statusausgang auf Seite 8-21*).

Verzögerungszeit K extern:

Diese Funktion aktiviert das Lesen und die Überprüfung der Umschaltzeiten der externen Schütze. Das Rücklesen erfolgt über den Eingang FBK_RST (Feedback_Restart). Die Funktionalität hängt ab von der gewählten Kategorie:

- Bei Kategorie 1 kann die externe Schütz-Überwachung nicht aktiviert werden.
- Bei Kategorie 4 ist die externe Schütz-Überwachung immer aktiviert.

Mittels Schieberegler kann der Wert im Bereich von 30ms....1300ms an die (maximal zulässige) Reaktionszeit der Ausgangs-Schaltkette (interne Relais und externe Schütze) angepasst werden.

Aktivierung Error Out: Diese Option aktiviert den Ausgang "Error". Der Ausgang ist 1 (HIGH), wenn ein Fehler am Rückleseeingang "FBK_RST" erfasst wird.

Der Ausgang "Error" wird durch folgende Ereignisse zurückgesetzt:

- Ausschalten und Wiedereinschalten der eloProg-Station (Hardware-Reset).
- Aktivierung des SW-Funktionsbausteins RESET (Software-Reset), siehe Beschreibung Funktionsbaustein RESET Seite 8-106.

Beispiel: Relais mit korrektem Feedback-Signal: In diesem Fall ERROR OUT = LOW (kein Fehler) Beispiel: Relais mit falschem Feedback-Signal (externe Zeit K überschritten):

In diesem Fall ERROR OUT = HIGH (Fehler)

eloProg

Eigenschaft

Typ Eingaenge Doppelter NC 🗸

E-STOP

8.2.2 Eingänge INPUT

E-STOP (Not-Halt, ein- und zweikanalig)

Der Funktionsbaustein E-STOP überprüft an den Eingängen In_x den Status eines Not-Halt-Gerätes. Sollte die Not-Halt-Taste gedrückt sein, ist der Ausgang *Output* LOW, andernfalls ist der Ausgang HIGH.

Parameter

Eingangstyp:

- Einzelner NC Ermöglicht das Anschließen von einkanaligen Not-Halt-Tastern
- Doppelter NC Ermöglicht das Anschließen von zweikanaligen Not-Halt-Tastern

Die Auswahl des Eingangstyps (Funktionsbaustein) ist anhand des eingesetzten Not-Halt-Gerätes und der zugrunde liegenden Risikobeurteilung zu treffen und die Eignung für die Applikation zu prüfen.

Manueller Reset: Diese Funktion aktiviert die Wiederanlaufsperre (Start) im Anschluss an jede Aktivierung des Not-Halt-Tasters. Andernfalls folgt die Aktivierung des Ausgangs direkt dem Zustand der Eingänge.

Reset-Typ: Es gibt 2 Arten von Reset: *Manuell* und *Überwacht*. Wird die Option *Manuell* gewählt, wird nur der Übergang des Signals von 0 auf 1 überprüft. Im Fall von *Überwacht* wird der doppelte Übergang von 0 auf 1 und dann zurück auf 0 kontrolliert.

CONNECTION EXAMPLE (TWO CONTACTS)

Art.-Nr.: 350HB002

Hinweis

Im Fall der Aktivierung von *Manueller Reset* müssen aufeinanderfolgende Eingänge am eloProg-Modul verwendet werden. Beispiel: Werden Input 1 und 2 für *In1* und *In2* am Funktionsbaustein verwendet, muss der Input 3 für den *Reset* verwendet werden.

Test Ausgänge: Ermöglicht es auszuwählen, welche Ausgänge mit Testsignalen an die Ausgangsklemme(n) *Out Test* übertragen werden sollen. Durch diese zusätzliche Prüfung können Kurz- und Querschlüsse zwischen den Leitungen erkannt werden. Dazu müssen die Prüfsignale (Test1-Test4) konfiguriert werden.

Test beim Start: Hierdurch wird der Test beim Start des externen Bauteils (Not-Halt-Taste) aktiviert. Dieser Test erfordert das Betätigen und Entriegeln der Taste, um eine komplette Funktionsprüfung durchzuführen und den Ausgang *Output* zu aktivieren. Diese Kontrolle wird nur beim Start der Maschine verlangt (beim Einschalten des Moduls).

Filter (ms): Ermöglicht die Filterung der von den externen Kontakten kommenden Signale. Dieser Filter ist von 3 bis 250 ms konfigurierbar und beseitigt eventuelles Kontaktprellen. Die Dauer dieses Filters beeinflusst die Gesamtreaktionszeit des Moduls.

Aktivierung Gleichzeitigkeit: Ist dies ausgewählt, wird die Kontrolle der Gleichzeitigkeit der vom externen Bauteil kommenden Signale aktiviert.

Gleichzeitigkeit (ms): Der Schieberegler ist nur im Fall der Aktivierung des vorangegangenen Parameters aktiv. Bestimmt die maximale Zeit (in ms), die zwischen den beiden unterschiedlichen vom externen Bauteil kommenden Signalen verstreichen darf.

Aktivierung Error Out: Wenn diese Option aktiviert ist, wird ein durch den Funktionsbaustein erkannter Fehler am Ausgang *Error* signalisiert.

E-GATE (Bewegliche trennende Schutzeinrichtungen, zweikanalig)

Der Funktionsbaustein E-GATE überprüft an den Eingängen In_x den Status einer zweikanaligen, beweglichen trennenden Schutzeinrichtung oder Schutztür. Sollte die bewegliche trennende Schutzeinrichtung oder die Schutztür geöffnet sein, ist der Ausgang *Output* LOW. Andernfalls ist der Ausgang HIGH.

Parameter

Eingangstyp:

- Doppelter NC Ermöglicht den Anschluss von Komponenten mit 2 Öffnerkontakten
- Doppelter NC / NO Ermöglicht den Anschluss von Komponenten mit 1 Schließer- und 1 Öffnerkontakt.

Die Auswahl des Eingangstyps (Funktionsbaustein) ist anhand der eingesetzten Schutzeinrichtung und der zugrunde liegenden Risikobeurteilung zu treffen und die Eignung für die Applikation zu prüfen.

Manueller Reset: Diese Funktion aktiviert die Wiederanlaufsperre (Start) im Anschluss an jede Aktivierung der Schutzeinrichtung/Schutztür. Andernfalls folgt die Aktivierung des Ausgangs direkt dem Zustand der Eingänge.

Reset-Typ: Es gibt 2 Arten von Reset: *Manuell* und *Überwacht*. Wird die Option *Manuell* gewählt, wird nur der Übergang des Signals von 0 auf 1 überprüft. Im Fall von *Überwacht* wird der doppelte Übergang von 0 auf 1 und dann zurück auf 0 kontrolliert.

Hinweis

Im Fall der Aktivierung von *Manueller Reset* müssen aufeinanderfolgende Eingänge am eloProg-Modul verwendet werden. Beispiel: Werden Input 1 und 2 für *In1* und *In2* am Funktionsbaustein verwendet, muss der Input 3 für den *Reset* verwendet werden.

Test Ausgänge: Ermöglicht es auszuwählen, welche Ausgänge mit Testsignalen an die Ausgangsklemme(n) *Out Test* übertragen werden sollen. Durch diese zusätzliche Prüfung können Kurz- und Querschlüsse zwischen den Leitungen erkannt werden. Dazu müssen die Prüfsignale (Test1-Test4) konfiguriert werden.

Test beim Start: Ist dies ausgewählt, aktiviert dies den Test beim Start des externen Bauteils. Dieser Test verlangt das Öffnen der beweglichen trennenden Schutzeinrichtung oder Schutztür, um eine komplette Funktionsprüfung durchzuführen und den Ausgang *Output* zu aktivieren. Diese Kontrolle wird nur beim Start der Maschine verlangt (beim Einschalten des Moduls).

Filter (ms): Ermöglicht die Filterung der von den externen Kontakten kommenden Signale. Dieser Filter ist von 3 bis 250 ms konfigurierbar und beseitigt eventuelles Kontaktprellen. Die Dauer dieses Filters beeinflusst die Gesamtreaktionszeit des Moduls.

Aktivierung Gleichzeitigkeit: Ist dies ausgewählt, wird die Kontrolle der Gleichzeitigkeit der vom externen Bauteil kommenden Signale aktiviert.

Gleichzeitigkeit (ms): Der Schieberegler ist nur im Fall der Aktivierung des vorangegangenen Parameters aktiv. Bestimmt die maximale Zeit (in ms), die zwischen den beiden unterschiedlichen vom externen Bauteil kommenden Signalen verstreichen darf.

Aktivierung Error Out: Wenn diese Option aktiviert ist, wird ein durch den Funktionsbaustein erkannter Fehler am Ausgang *Error* signalisiert.

SINGLE E-GATE (Bewegliche trennende Schutzeinrichtungen, einkanalig)

Der Funktionsbaustein SINGLE E-GATE überprüft am Eingang *In* den Status einer einkanaligen, beweglichen trennenden Schutzeinrichtung oder Schutztür. Sollten die bewegliche trennende Schutzeinrichtung oder die Schutztür geöffnet sein, ist der Ausgang *Output* LOW. Andernfalls ist der Ausgang HIGH.

 Eigenschaft
SINGLE E-GATE
V Manueller Reset Reset-Typ Ueberwacht V Test Ausgaenge No Test V input 1
Test beim Start Filter (ms) F

Parameter

Manueller Reset: Ist dies ausgewählt, wird die Wiederanlaufsperre (Start) im Anschluss an jede Aktivierung der Schutzeinrichtung/Schutztür aktiviert. Andernfalls folgt die Aktivierung des Ausgangs direkt dem Zustand des Eingangs.

Reset-Typ: Es gibt 2 Arten von Reset: *Manuell* und *Überwacht*. Wird die Option *Manuell* gewählt, wird nur der Übergang des Signals von 0 auf 1 überprüft. Im Fall *Überwacht* wird der doppelte Übergang von 0 auf 1 und dann zurück auf 0 überprüft.

Hinweis

Im Fall der Aktivierung von *Manueller Reset* müssen aufeinanderfolgende Eingänge am eloProg-Modul verwendet werden. Beispiel: Wird Input 1 für *In1* am Funktionsbaustein verwendet, muss der Input 2 für den *Reset* verwendet werden.

Test Ausgänge: Ermöglicht es auszuwählen, welche Ausgänge mit Testsignalen an die Ausgangsklemme(n) *Out Test* übertragen werden sollen. Durch diese zusätzliche Prüfung können Kurz- und Querschlüsse zwischen den Leitungen erkannt werden. Dazu müssen die Prüfsignale (Test1-Test4) konfiguriert werden.

Test beim Start: Ist dies ausgewählt, aktiviert dies den Test beim Start des externen Bauteils. Dieser Test verlangt das Öffnen der beweglichen trennenden Schutzeinrichtung oder Schutztür, um eine komplette Funktionsprüfung durchzuführen und den Ausgang *Output* zu aktivieren. Diese Kontrolle wird nur beim Start der Maschine verlangt (beim Einschalten des Moduls).

Filter (ms): Ermöglicht die Filterung der von den externen Kontakten kommenden Signale. Dieser Filter ist von 3 bis 250 ms konfigurierbar und beseitigt eventuelles Kontaktprellen. Die Dauer dieses Filters beeinflusst die Gesamtreaktionszeit des Moduls.

Aktivierung Error Out: Wenn diese Option aktiviert ist, wird ein durch den Funktionsbaustein erkannter Fehler am Ausgang *Error* signalisiert.

LOCK FEEDBACK (Zuhaltungsüberwachung)

Der Funktionsbaustein LOCK FEEDBACK überprüft an den Eingängen In_x den (Sperr-)Status einer elektromechanischen Verriegelung mit Zuhaltung (GUARD LOCK) für bewegliche trennende Schutzeinrichtungen oder Schutz-türen.

In dem Fall, wo die Eingänge anzeigen, dass die Verriegelung geschlossen ist, ist der Ausgang *Output* HIGH. Andernfalls ist der Ausgang LOW.

Eingangstyp:

- Einzelner NC Ermöglicht den Anschluss von Komponenten mit 1 Öffnerkontakt.
- Doppelter NC Ermöglicht den Anschluss von Komponenten mit 2 Öffnerkontakten.
- Doppelter NC-NO Ermöglicht den Anschluss von Komponenten mit 1 Schließer- und 1 Öffnerkontakt.

Die Auswahl des Eingangstyps (Funktionsbaustein) ist anhand der eingesetzten Zuhaltung und der zugrunde liegenden Risikobeurteilung zu treffen und die Eignung für die Applikation zu prüfen.

Test Ausgänge: Ermöglicht es auszuwählen, welche Ausgänge mit Testsignalen an die Ausgangsklemme(n) *Out Test* übertragen werden sollen. Durch diese zusätzliche Prüfung können Kurz- und Querschlüsse zwischen den Leitungen erkannt werden. Dazu müssen die Prüfsignale (Test1-Test4) konfiguriert werden.

Filter (ms): Ermöglicht die Filterung der von den externen Kontakten kommenden Signale. Dieser Filter ist von 3 bis 250 ms konfigurierbar und beseitigt eventuelles Kontaktprellen. Die Dauer dieses Filters beeinflusst die Gesamtreaktionszeit des Moduls.

Aktivierung Gleichzeitigkeit: Ist dies ausgewählt, wird die Kontrolle der Gleichzeitigkeit der vom externen Bauteil kommenden Signale aktiviert.

Gleichzeitigkeit (ms): Der Schieberegler ist nur im Fall der Aktivierung des vorangegangenen Parameters aktiv. Bestimmt die maximale Zeit (in ms), die zwischen den beiden unterschiedlichen vom externen Bauteil kommenden Signalen verstreichen darf.

Aktivierung Error Out: Wenn diese Option aktiviert ist, wird ein durch den Funktionsbaustein erkannter Fehler am Ausgang *Error* signalisiert.

Eigenschaft

Typ Eingaenge Doppelter NO 🗸

✓ Manueller Reset Reset-Typ

Ueberwacht 🗸

Test Ausgaenge

No Test 👽 Input 1

No Test 👽 Input 2

Aktivierung Gleichzeitigkeit Gleichzeitigkeit (ms) 10

Aktivierung Error Out

Objektbeschreibung

Test beim Start Filter (ms)

eloProg

ENABLE (Schlüsselschalter)

Der Funktionsbaustein ENABLE überprüft an den Eingängen In_x den Status eines Schlüsselschalters. Sollte der Schlüssel nicht gedreht (aktiv) sein, ist der Ausgang *Output* LOW. Andernfalls ist der Ausgang HIGH.

Parameter

Eingangstyp:

- Einzelner NO Ermöglicht den Anschluss von Komponenten mit 1 Schließerkontakt
- Doppelter NO Ermöglicht den Anschluss von Komponenten mit 2 Schließerkontakten.

Die Auswahl des Eingangstyps (Funktionsbaustein) ist anhand des eingesetzten Schlüsselschalters und der zugrunde liegenden Risikobeurteilung zu treffen und die Eignung für die Applikation zu prüfen.

Manueller Reset: Diese Funktion aktiviert die Wiederanlaufsperre (Start) im Anschluss an jede Aktivierung der ENABLE-Funktion (des Schlüssels). Andernfalls folgt die Aktivierung des Ausgangs direkt dem Zustand der Eingänge.

Reset-Typ: Es gibt 2 Arten von Reset: *Manuell* und *Überwacht*. Wird die Option *Manuell* gewählt, wird nur der Übergang des Signals von 0 auf 1 überprüft. Im Fall *Überwacht* wird der doppelte Übergang von 0 auf 1 und dann zurück auf 0 überprüft.

Hinweis

Im Fall der Aktivierung von *Manueller Reset* müssen aufeinanderfolgende Eingänge am eloProg-Modul verwendet werden. Beispiel: Werden Input 1 und 2 für *In1* und *In2* am Funktionsbaustein verwendet, muss der Input 3 für den *Reset* verwendet werden.

CONNECTION EXAMPLE (TWO CONTACTS)

elobau 🕑

Test Ausgänge: Ermöglicht es auszuwählen, welche Ausgänge mit Testsignalen an die Ausgangsklemme(n) *Out Test* übertragen werden sollen. Durch diese zusätzliche Prüfung können Kurz- und Querschlüsse zwischen den Leitungen erkannt werden. Dazu müssen die Prüfsignale (Test1-Test4) konfiguriert werden.

Test beim Start: Ist dies ausgewählt, aktiviert dies den Test beim Start des externen Bauteils. Dieser Test verlangt das Öffnen und Schließen des Schlosses, um eine komplette Funktionsprüfung durchzuführen und den Ausgang *Output* zu aktivieren. Diese Kontrolle wird nur beim Start der Maschine verlangt (beim Einschalten des Moduls).

Filter (ms): Ermöglicht die Filterung der von den externen Kontakten kommenden Signale. Dieser Filter ist von 3 bis 250 ms konfigurierbar und beseitigt eventuelles Kontaktprellen. Die Dauer dieses Filters beeinflusst die Gesamtreaktionszeit des Moduls.

Aktivierung Gleichzeitigkeit: Ist dies ausgewählt, wird die Kontrolle der Gleichzeitigkeit der vom externen Bauteil kommenden Signale aktiviert.

Gleichzeitigkeit (ms): Der Schieberegler ist nur im Fall der Aktivierung des vorangegangenen Parameters aktiv. Bestimmt die maximale Zeit (in ms), die zwischen den beiden unterschiedlichen vom externen Bauteil kommenden Signalen verstreichen darf.

Aktivierung Error Out: Wenn diese Option aktiviert ist, wird ein durch den Funktionsbaustein erkannter Fehler am Ausgang *Error* signalisiert.

ESPE (BWS: Sicherheitslichtschranke/-Laserscanner)

Der Funktionsbaustein ESPE (BWS) überprüft an den Eingängen In_x den Status einer Sicherheitslichtschranke (oder eines Sicherheitslaserscanners). Sollte das Schutzfeld der Lichtschranke oder des Laserscanners unterbrochen sein (Ausgänge LOW), ist der Ausgang *Output* LOW.

Parameter

Manueller Reset: Diese Funktion aktiviert die Wiederanlaufsperre (*Reset*) im Anschluss an jede Unterbrechung des Schutzfeldes. Andernfalls folgt die Aktivierung des Ausgangs direkt dem Zustand der Eingänge.

Reset-Typ: Es gibt 2 Arten von Reset: *Manuell* und *Überwacht*. Wird die Option *Manuell* gewählt, wird nur der Übergang des Signals von 0 auf 1 überprüft. Im Fall von *Überwacht* wird der doppelte Übergang von 0 auf 1 und dann zurück auf 0 kontrolliert.

Hinweis

Im Fall der Aktivierung von *Manueller Reset* müssen aufeinanderfolgende Eingänge am eloProg-Modul verwendet werden. Beispiel: Werden Input 1 und 2 für *In1* und *In2* am Funktionsbaustein verwendet, muss der Input 3 für den *Reset* verwendet werden.

Hinweis

Testsignale können bei ESPE (BWS) mit sicheren Halbleiter-(OSSD-)Ausgängen nicht verwendet werden, da die Kontrolle auf Querschlüsse durch die ESPE (BWS = berührungslos wirkende Schutzeinrichtung) ausgangsseitig erfolgt.

Test beim Start: Diese Funktion aktiviert den Test beim Start der Sicherheitslichtschranke (des Sicherheitslaserscanners). Dieser Test verlangt die Unterbrechung und die Freigabe des Schutzfeldes, um eine komplette Funktionsprüfung durchzuführen und den Ausgang *Output* zu aktivieren. Diese Kontrolle wird nur beim Start der Maschine verlangt (Einschalten des Moduls).

Filter (ms): Ermöglicht die Filterung der von der Sicherheitslichtschranke kommenden Signale. Dieser Filter ist von 3 bis 250 ms konfigurierbar und beseitigt eventuelles Kontaktprellen. Die Dauer dieses Filters beeinflusst die Gesamtreaktionszeit des Moduls.

Gleichzeitigkeit (ms): Bestimmt die maximale Zeit (in ms), die zwischen den beiden unterschiedlichen von der Sicherheitslichtschranke kommenden Signale verstreichen darf.

Aktivierung Error Out: Wenn diese Option aktiviert ist, wird ein durch den Funktionsbaustein erkannter Fehler am Ausgang *Error* signalisiert.

FOOTSWITCH (Sicherheitspedal/-Fußschalter)

Der Funktionsbaustein FOOTSWITCH überprüft an den Eingängen In_x den Status einer Sicherheitseinrichtung mit Pedal. Sollte das Pedal nicht betätigt sein, ist der Ausgang *Output* LOW. Andernfalls ist der Ausgang HIGH.

Parameter

Eingangstyp:

- Einzelner NC Ermöglicht den Anschluss von Pedalen mit 1 Öffnerkontakt
- Einzelner NO Ermöglicht den Anschluss von Pedalen mit 1 Schließerkontakt
- Doppelter NC Ermöglicht den Anschluss von Pedalen mit 2 Öffnerkontakten
- Doppelter NC/NO Ermöglicht den Anschluss von Pedalen mit 1 Schließer- und 1 Öffnerkontakt

Hinweis

Doppelter NC/NO: Der Ausgang *Output* des Funktionsbausteins FOOTSWITCH ist HIGH, wenn das Pedal gedrückt ist, und am Eingang "In1" ein HIGH-Signal (= betätigter Schließer), sowie am Eingang "In2" ein LOW-Signal (= betätigter Öffner) erkannt wird. Die Auswahl des Eingangstyps (Funktionsbaustein) ist anhand des eingesetzten Fußschalters und der zugrunde liegenden Risikobeurteilung zu treffen und die Eignung für die Applikation zu prüfen.

Manueller Reset: Diese Funktion aktiviert die Wiederanlaufsperre im Anschluss an jede Aktivierung des Pedals. Andernfalls folgt die Aktivierung des Ausgangs direkt dem Zustand der Eingänge.

Reset-Typ: Es gibt 2 Arten von Reset: *Manuell* und *Überwacht*. Wird die Option *Manuell* gewählt, wird nur der Übergang des Signals von 0 auf 1 überprüft. Im Fall von *Überwacht* wird der doppelte Übergang von 0 auf 1 und dann zurück auf 0 kontrolliert.

Hinweis

Im Fall der Aktivierung von *Manueller Reset* müssen aufeinanderfolgende Eingänge am eloProg-Modul verwendet werden. Beispiel: Werden Input 1 und 2 für *In1* und *In2* am Funktionsbaustein verwendet, muss der Input 3 für den *Reset* verwendet werden.

elobau 🕑

Test Ausgänge: Ermöglicht es auszuwählen, welche Ausgänge mit Testsignalen an die Ausgangsklemme(n) *Out Test* übertragen werden sollen. Durch diese zusätzliche Prüfung können Kurz- und Querschlüsse zwischen den Leitungen erkannt werden. Dazu müssen die Prüfsignale (Test1-Test4) konfiguriert werden.

Test beim Start: Ist dies ausgewählt, aktiviert dies den Test beim Start des externen Bauteils. Dieser Test verlangt das Betätigen und Loslassen des Pedals, um eine komplette Funktionsprüfung durchzuführen und den Ausgang *Output* zu aktivieren. Diese Kontrolle wird nur beim Start der Maschine verlangt (beim Einschalten des Moduls).

Filter (ms): Ermöglicht die Filterung der von den externen Kontakten kommenden Signale. Dieser Filter ist von 3 bis 250 ms konfigurierbar und beseitigt eventuelles Kontaktprellen. Die Dauer dieses Filters beeinflusst die Gesamtreaktionszeit des Moduls.

Aktivierung Gleichzeitigkeit: Ist dies ausgewählt, wird die Kontrolle der Gleichzeitigkeit der vom externen Bauteil kommenden Signale aktiviert.

Gleichzeitigkeit (ms): Der Schieberegler ist nur im Fall der Aktivierung des vorangegangenen Parameters aktiv. Bestimmt die maximale Zeit (in ms), die zwischen den beiden unterschiedlichen vom externen Bauteil kommenden Signalen verstreichen darf.

Aktivierung Error Out: Wenn diese Option aktiviert ist, wird ein durch den Funktionsbaustein erkannter Fehler am Ausgang *Error* signalisiert.

MOD-SEL (Betriebsartenwahlschalter)

Der Funktionsbaustein MOD-SEL überprüft an den Eingängen In_x den Status von einem Betriebsartenwahlschalter (bis zu 4 Eingänge). Sollte sich nur einer der Eingänge auf HIGH befinden, befindet sich der entsprechende Ausgang auf HIGH. In den verbleibenden Fällen, d.h., bei allen Eingängen auf LOW oder mehr als einem Eingang auf HIGH sind dann alle Ausgänge LOW.

Parameter

Eingangstyp:

- Doppelt Ermöglicht den Anschluss von 2-Wege-Betriebsartenwahlschaltern
- Dreifach Ermöglicht den Anschluss von 3-Wege-Betriebsartenwahlschaltern
- Vierfach Ermöglicht den Anschluss von 4-Wege-Betriebsartenwahlschaltern

Filter (ms): Ermöglicht die Filterung der vom Betriebsartenwahlschalter kommenden Signale. Dieser Filter ist von 3 bis 250 ms konfigurierbar und beseitigt eventuelles Kontaktprellen. Die Dauer dieses Filters beeinflusst die Gesamtreaktionszeit des Moduls.

Gleichzeitigkeit (ms): Stets aktiv. Mit dem Schieberegler kann im Bereich zwischen 10 ms...7000 ms die Zeit eingestellt werden, die beim Umschalten der Eingänge (Wechsel des Einganges mit HIGH-Signal) maximal verstreichen darf. Es gilt die Bedingung, dass ein Eingang HIGH sein muss und nicht mehr als ein Eingang gleichzeitig HIGH sein darf.

Aktivierung Error Out: Wenn diese Option aktiviert ist, wird ein durch den Funktionsbaustein erkannter Fehler am Ausgang *Error* signalisiert.

PHOTOCELL (Sicherheitslichtschranke)

Der Funktionsbaustein PHOTOCELL überprüft am Eingang In_x den Status einer Sicherheitslichtschranke. Sollte der Erkennungsbereich der Lichtschranke belegt sein, oder (bei aktivierter Testung) der Test einen Fehler erkennen (Ausgang Sicherheitslichtschranke LOW) ist der Ausgang *Output* LOW.

Bei Ausgang der Sicherheitslichtschranke HIGH, ist der Ausgang *Output* HIGH.

Parameter

Manueller Reset: Diese Funktion aktiviert die Wiederanlaufsperre im Anschluss an jede Aktivierung der Sicherheitslichtschranke. Andernfalls folgt die Aktivierung des Ausgangs direkt dem Zustand des Eingangs.

Test Ausgänge: Soll die Kategorie 2 nach DIN EN ISO 13849-1 erfüllt werden, muss ein Test-Ausgang zur Ansteuerung des Testeingangs der Sicherheitslichtschranke ausgewählt werden.

Test beim Start: Zum Erreichen der Kategorie 2 (gemäß DIN EN ISO 13849-1) muss diese Option aktiviert werden. Hierdurch wird der Test beim Start des externen Bauteils (Lichtschranke) aktiviert. Dieser Test erfordert das Abschalten und die Freigabe der Lichtschranke, um eine komplette Funktionsprüfung durchzuführen und den Ausgang *Output* zu aktivieren. Diese Kontrolle wird nur beim Start der Maschine verlangt (beim Einschalten des Moduls).

Hinweis

Die Reaktionszeit des Empfängers (Lichtschranke) muss zwischen 2ms und 20ms liegen.

Im Fall der Aktivierung von *Manueller Reset* müssen aufeinanderfolgende Eingänge am eloProg-Modul verwendet werden. Beispiel: Wird der Input 1 für *In* am Funktionsbaustein verwendet, muss der Input 2 für den *Reset* verwendet werden.

Filter (ms): Ermöglicht die Filterung der von den externen Kontakten kommenden Signale. Dieser Filter ist von 3 bis 250 ms konfigurierbar und beseitigt eventuelles Kontaktprellen. Die Dauer dieses Filters beeinflusst die Gesamtreaktionszeit des Moduls.

Aktivierung Error Out: Wenn diese Option aktiviert ist, wird ein durch den Funktionsbaustein erkannter Fehler am Ausgang *Error* signalisiert.

TWO-HAND (Zweihandsteuerung)

Der Funktionsbaustein TWO-HAND überprüft an den Eingängen In_x den Status einer Zweihandsteuerung. Sollte ein gleichzeitiges Betätigen (innerhalb von max. 500 ms) der beiden Tasten erfolgen, ist der Ausgang *Output* HIGH. Dieser Status dauert bis zum Loslassen der Tasten an. Andernfalls bleibt der Ausgang LOW.

Parameter

Eingangstyp:

- Doppelter NO Ermöglicht den Anschluss von Zweihandsteuerungen, die aus 1 Schließerkontakt für jede der beiden Tasten bestehen
- Vierfacher NO-NC Ermöglicht den Anschluss von Zweihandsteuerungen mit je 1 Schließer-/Öffner-Kontakt je Taster.

Hinweis

Doppelter NC/NO: Der Ausgang *Output* des Funktionsbausteins "Two-Hand" ist HIGH, wenn beiden Tasten innerhalb des Zeitfensters (500 ms) gedrückt werden, und an den Eingängen "In1/In3" HIGH-Signale (= betätigte Schließer), sowie an den Eingängen "In2/In4" LOW-Signale (= betätigte Öffner) erkannt werden.

Die Auswahl des Eingangstyps (Funktionsbaustein) ist anhand des verwendeten Zweihand-Bediengerätes und der zugrunde liegenden Risikobeurteilung zu treffen und die Eignung für die Applikation zu prüfen.

Test Ausgänge: Ermöglicht es auszuwählen, welche Ausgänge mit Testsignalen an die Ausgangsklemme(n) *Out Test* übertragen werden sollen. Durch diese zusätzliche Prüfung können Kurz- und Querschlüsse zwischen den Leitungen erkannt werden. Dazu müssen die Prüfsignale (Test1-Test4) konfiguriert werden.

Test beim Start: Hierdurch wird der Test beim Start des externen Bauteils aktiviert. Dieser Test erfordert das Betätigen und Loslassen (innerhalb der max. Gleichzeitigkeit von 500 ms) der beiden Tasten, um eine komplette Funktionsprüfung durchzuführen und den Ausgang *Output* zu aktivieren. Diese Kontrolle wird nur beim Start der Maschine verlangt (beim Einschalten des Moduls).

Filter (ms): Ermöglicht die Filterung der von den externen Kontakten kommenden Signale. Dieser Filter ist von 3 bis 250 ms konfigurierbar und beseitigt eventuelles Kontaktprellen. Die Dauer dieses Filters beeinflusst die Gesamtreaktionszeit des Moduls.

Aktivierung Error Out: Wenn diese Option aktiviert ist, wird ein durch den Funktionsbaustein erkannter Fehler am Ausgang *Error* signalisiert.

NETWORK_IN

Dieser Funktionsbaustein stellt die Eingangsschnittstelle einer Netzwerkverbindung her (Details siehe Kap. NETWORK (Globaler Not-Halt) auf Seite 8-100). Der Ausgang Output ist HIGH, wenn am Eingang/Eingängen ein HIGH-Signal anliegt.

Parameter

Eingangstypen:

- Einzeln Ermöglicht den Anschluss an den Ausgang NETWORK_OUT via Statusausgang eines anderen eloProg-Basismoduls 485EPB.
- Doppelt Ermöglicht den Anschluss an den Ausgang NETWORK_OUT via OSSD-Ausgänge eines anderen eloProg-Basismoduls 485EPB

Filter (ms): Ermöglicht das Filtern der von einem weiteren 485EPB Basismodul kommenden Signale in einem Bereich von 3...250 ms. Die Dauer des gewählten Filters beeinflusst die Gesamtreaktionszeit des Moduls.

Hinweis

- ➔ Dieser Funktionsbaustein kann nur an den Eingängen eines 485EPB Basismoduls verwendet werden.
- ➔ Dieser Funktionsbaustein muss verwendet werden, wenn der Anschluss der OSSD-Ausgänge eines 485EPB Basismoduls an die OSSD-Eingänge eines nachgeschalteten Basismoduls erfolgt. Auf allen Modulen muss der NETWORK-Funktionsbaustein verwendet werden.

SENSOR (Lichtschranke, Initiator)

Der Funktionsbaustein SENSOR überprüft am Eingang *In* den Status eines Sensors (kein Sicherheitssensor).

Der Funktionsbaustein ist am Ausgang *Output* = 1 (HIGH), wenn der Sensor-Ausgang = 1 (HIGH) ist.

Parameter

Manueller Reset: Diese Funktion aktiviert die Wiederanlaufsperre im Anschluss an jede Unterbrechung des Ausgangssignals des Sensors. Andernfalls folgt die Aktivierung des Ausgangs *Output* direkt dem Zustand des Eingangs.

Reset-Typ: Es gibt 2 Arten von Reset: *Manuell* und *Überwacht*. Wird die Option *Manuell* gewählt, wird nur der Übergang des Signals von 0 auf 1 überprüft. Im Fall von *Überwacht* wird der doppelte Übergang von 0 auf 1 und dann zurück auf 0 überprüft.

Hinweis

Im Fall der Aktivierung von *Manueller Reset* müssen aufeinanderfolgende Eingänge am eloProg-Modul verwendet werden. Beispiel: Wird der Input 1 für *In1* am Funktionsbaustein verwendet, muss der Input 2 für den *Reset* verwendet werden.

Test Ausgänge: Ermöglicht es auszuwählen, welche Ausgänge mit Testsignalen an die Ausgangsklemme(n) *Out Test* übertragen werden sollen. Durch diese zusätzliche Prüfung können Kurz- und Querschlüsse zwischen den Leitungen erkannt werden. Dazu müssen die Prüfsignale (Test1-Test4) konfiguriert werden.

Test beim Start: Hierdurch wird der Test beim Start des Sensors aktiviert. Dieser Test erfordert das Abschalten und die Freigabe des Sensors, um eine komplette Funktionsprüfung durchzuführen und den Ausgang *Output* zu aktivieren. Diese Kontrolle wird nur beim Start der Maschine verlangt (beim Einschalten des Moduls).

Filter (ms): Ermöglicht die Filterung der von den externen Kontakten kommenden Signale. Dieser Filter ist von 3 bis 250 ms konfigurierbar und beseitigt eventuelles Kontaktprellen. Die Dauer dieses Filters beeinflusst die Gesamtreaktionszeit des Moduls.

Aktivierung Error Out: Wenn diese Option aktiviert ist, wird ein durch den Funktionsbaustein erkannter Fehler am Ausgang *Error* signalisiert.

S-MAT (Sicherheitstrittmatte)

Der Funktionsbaustein S-MAT überprüft an den Eingängen In_x den Status einer Sicherheitstrittmatte. Wenn eine Person auf der Trittmatte steht, ist der Ausgang *Output* LOW. Andernfalls ist der Ausgang *Output* bei nicht betretener Matte HIGH.

Parameter

Manueller Reset: Diese Funktion aktiviert die Wiederanlaufsperre im Anschluss an jedes Unterbrechen (Betreten) der Sicherheitstrittmatte.

Andernfalls folgt die Aktivierung des Ausgangs *Output* direkt dem Zustand der Eingänge.

Reset-Typ: Es gibt 2 Arten von Reset: *Manuell* und *Überwacht*. Wird die Option *Manuell* gewählt, wird nur der Übergang des Signals von 0 auf 1 überprüft. Im Fall von *Überwacht* wird der doppelte Übergang von 0 auf 1 und dann zurück auf 0 überprüft.

Hinweis

- Im Fall der Aktivierung von *Manueller Reset* müssen aufeinanderfolgende Eingänge am eloProg-Modul verwendet werden. Beispiel: Werden Input 1 und 2 für *In1* und *In2* am Funktionsbaustein verwendet, muss der Input 3 für den *Reset* verwendet werden.
- Jeder der Test-Ausgänge kann an jeweils nur einen Eingang von S-MAT angeschlossen werden (die Parallelschaltung von 2 Eingängen ist nicht möglich).
- Der Funktionsbaustein S-MAT kann nicht mit Zweidraht-Bauteilen und Endwiderstand verwendet werden.

Test Ausgänge: Ermöglicht es auszuwählen, welche Ausgänge mit Testsignalen an die Ausgangsklemme(n) *Out Test* übertragen werden sollen. Durch diese zusätzliche Prüfung können Kurz- und Querschlüsse zwischen den Leitungen erkannt werden. Dazu müssen die Prüfsignale (Test1-Test4) konfiguriert werden.

Test beim Start: Hierdurch wird der Test beim Start des externen Bauteils aktiviert. Dieser Test erfordert das Betreten und Entlasten der Sicherheitstrittmatte, um eine komplette Funktionsprüfung durchzuführen und den Ausgang *Output* zu aktivieren. Diese Kontrolle wird nur beim Start der Maschine verlangt (beim Einschalten des Moduls).

Filter (ms): Ermöglicht die Filterung der von den externen Kontakten kommenden Signale. Dieser Filter ist von 3 bis 250 ms konfigurierbar und beseitigt eventuelles Kontaktprellen. Die Dauer dieses Filters beeinflusst die Gesamtreaktionszeit des Moduls.

Aktivierung Error Out: Wenn diese Option aktiviert ist, wird ein durch den Funktionsbaustein erkannter Fehler am Ausgang *Error* signalisiert.

Objektbeschreibung: Erlaubt das Einfügen eines beschreibenden Textes der Funktion des externen Bauteils. Dieser Text wird nur im oberen Teil des Symbols eingeblendet.

SWITCH (Schalter)

Der Funktionsbaustein SWITCH überprüft am Eingang *In1* den Status einer Taste oder eines Schalters (keine Sicherheitsbauteile). Sollte die Taste oder der Schalter betätigt sein, ist der Ausgang *Output* = 1 (HIGH). Andernfalls ist der Ausgang *Output* = 0 (LOW).

Parameter

Manueller Reset: Diese Funktion aktiviert die Wiederanlaufsperre im Anschluss an jede Unterbrechung des Ausgangssignals des Schalters. Andernfalls folgt die Aktivierung des Ausgangs *Output* direkt dem Zustand des Eingangs.

Reset-Typ: Es gibt 2 Arten von Reset: *Manuell* und *Überwacht*. Wird die Option *Manuell* gewählt, wird nur der Übergang des Signals von 0 auf 1 überprüft. Im Fall von *Überwacht* wird der doppelte Übergang von 0 auf 1 und dann zurück auf 0 überprüft.

Hinweis

Im Fall der Aktivierung von *Manueller Reset* müssen aufeinanderfolgende Eingänge am eloProg-Modul verwendet werden. Beispiel: Wird der Input 1 für *In1* am Funktionsbaustein verwendet, muss der Input 2 für den *Reset* verwendet werden.

Test Ausgänge: Ermöglicht es auszuwählen, welche Ausgänge mit Testsignalen an die Ausgangsklemme(n) *Out Test* übertragen werden sollen. Durch diese zusätzliche Prüfung können Kurz- und Querschlüsse zwischen den Leitungen erkannt werden. Dazu müssen die Prüfsignale (Test1-Test4) konfiguriert werden.

Test beim Start: Hierdurch wird der Test beim Start des externen Bauteils aktiviert. Dieser Test erfordert das Öffnen und Schließen des Schalters, um eine komplette Funktionsprüfung durchzuführen und den Ausgang *Output* zu aktivieren. Diese Kontrolle wird nur beim Start der Maschine verlangt (beim Einschalten des Moduls).

Filter (ms): Ermöglicht die Filterung der vom Schalter kommenden Signale. Dieser Filter ist von 3 bis 250 ms konfigurierbar und beseitigt eventuelles Kontaktprellen. Die Dauer dieses Filters beeinflusst die Gesamtreaktionszeit des Moduls.

Aktivierung Error Out: Wenn diese Option aktiviert ist, wird ein durch den Funktionsbaustein erkannter Fehler am Ausgang *Error* signalisiert.

Objektbeschreibung: Erlaubt das Einfügen eines beschreibenden Textes der Funktion des externen Bauteils. Dieser Text wird nur im oberen Teil des Symbols eingeblendet.

ENABLING GRIP SWITCH (Zustimmschalter)

Der Funktionsbaustein ENABLING GRIP SWITCH überprüft an den Eingängen In_x den Status eines Zustimmschalters. Sollte der Zustimmschalter nicht betätigt (Position 1) oder vollständig gedrückt sein (Position 3), ist der Ausgang *Output* = 0 (LOW). Sollte er zur Hälfte gedrückt sein (Position 2), ist der Ausgang *Output* = 1 (HIGH).

Siehe auch Wahrheitstabelle auf Seite 8-44.

Parameter

Eingangstyp:

- Doppelter NO Ermöglicht den Anschluss eines Zustimmschalters mit 2 zwangsgeführten Schließerkontakten.
- Doppelter NO + 1NC Ermöglicht den Anschluss eines Zustimmschalters mit 2 zwangsgeführten Schließerkontakten + 1 Öffnerkontakt.

Die Auswahl des Eingangstyps (Funktionsbaustein) ist anhand des verwendeten Zustimmschalters und der zugrunde liegenden Risikobeurteilung zu treffen und die Eignung für die Applikation zu prüfen.

Test Ausgänge: Ermöglicht es auszuwählen, welche Ausgänge mit Testsignalen an die Ausgangsklemme(n) *Out Test* übertragen werden sollen. Durch diese zusätzliche Prüfung können Kurz- und Querschlüsse zwischen den Leitungen erkannt werden. Dazu müssen die Prüfsignale (Test1-Test4) konfiguriert werden.

Test beim Start: Hierdurch wird der Test beim Start des externen Bauteils aktiviert. Dieser Test erfordert das Öffnen und Schließen des Schalters, um eine komplette Funktionsprüfung durchzuführen und den Ausgang *Output* zu aktivieren. Diese Kontrolle wird nur beim Start der Maschine verlangt (beim Einschalten des Moduls).

Gleichzeitigkeit (ms): Bestimmt die maximale Zeit (in ms), die zwischen den beiden unterschiedlichen vom externen Bauteil kommenden Signalen verstreichen darf.

Filter (ms): Ermöglicht die Filterung der vom Schalter kommenden Signale. Dieser Filter ist von 3 bis 250 ms konfigurierbar und beseitigt eventuelles Kontaktprellen. Die Dauer dieses Filters beeinflusst die Gesamtreaktionszeit des Moduls.

Aktivierung Error Out: Wenn diese Option aktiviert ist, wird ein durch den Funktionsbaustein erkannter Fehler am Ausgang *Error* signalisiert.

Modusauswahl (nur aktiv bei Eingangstyp Doppelter NO + 1NC): Auswahl dient zur Anpassung an den anzuschließenden Typ des Zustimmschalters; siehe Wahrheitstabelle auf <u>Seite 8-44</u>.

Objektbeschreibung: Erlaubt das Einfügen eines beschreibenden Textes der Funktion des externen Bauteils. Dieser Text wird nur im oberen Teil des Symbols eingeblendet.

Hinweis

Die Modusauswahl "Mode Select" ist nur beim Eingangstyp "Doppelter NO + 1 NC aktiviert. Mode 1 und Mode 2 unterscheiden sich durch unterschiedliche Bedingungen (Signale) am dritten Eingang (Input 3) für das Schalten des Ausgangs in der Position 2 (Zustimm-Position): Mode 1: HIGH-Pegel erforderlich, Mode 2: LOW-Pegel erforderlich.

POSITION 1: Zustimmschalter vollständig gelöst POSITION 2: Zustimmschalter bis Mittelstellung gedrückt POSITION 3: Zustimmschalter vollständig gedrückt

	Schalterposition		
	1	2	3
Eingang 1	0	1	0
Eingang 2	0	1	0
Ausgang	0	1	0

Tab. 8-1 Eingangstyp "Doppelter NO"

3

POSITION 1: Zustimmschalter vollständig gelöst POSITION 2: Zustimmschalter bis Mittelstellung gedrückt POSITION 3: Zustimmschalter vollständig gedrückt

Mode 1	-	
l.	2	3
Ū.		

Modusauswahl

2

	Schalterposition		
	1	2	3
Eingang 1	0	1	0
Eingang 2	0	1	0
Eingang 3	1	1	0
Ausgang	0	1	0

Tab. 8-2 Modus 1, Eingangstyp "Doppelter NO + 1NC"

POSITION 1: Zustimmschalter vollständig gelöst POSITION 2: Zustimmschalter bis Mittelstellung gedrückt POSITION 3: Zustimmschalter vollständig gedrückt

Modusauswa Mode 2 💌	hl	
!	2	3

	Schalterposition		
	1	2	3
Eingang 1	0	1	0
Eingang 2	0	1	0
Eingang 3	1	0	0
Ausgang	0	1	0

Tab. 8-3 Modus 2, Eingangstyp "Doppelter NO + 1NC"

elobau 🕑

TESTABLE SAFETY DEVICE (mechanischer Sicherheitsschalter)

Der Funktionsbaustein TESTABLE SAFETY DEVICE überprüft an den Eingängen In_x den Status eines einkanaligen oder zweikanaligen (mechanischen) Sicherheitsschalters als NO (Schließer) oder NC (Öffner). Anhand der Tabellen den Sensortyp festlegen.

Die Auswahl des Eingangstyps (Funktionsbaustein) ist anhand des verwendeten Sicherheitsschalters und der zugrunde liegenden Risikobeurteilung zu treffen und die Eignung für die Applikation zu prüfen.

(Einzelner NC/Öffner)

	TESTABLE S	AFETY
-	>In 1	QOutput

EING1	AUSG
0	0
1	1

TESTABLE SAFET	Y
>In 1 - 0 0-	Output

EING1	AUSG
0	0
1	1

(Einzelner NO/Schließer)

Eigenschaft TESTABLE SAFETY DEVICE Typ Eingaenge TESTABLE SAFETY Einzelner NC 🗸 DEVICE Manueller Reset Reset-Typ Ueberwacht 🗸 Test Ausgaenge No Test 👽 Input 1 🔽 Test beim Start Filter (ms) 3 🗸 Aktivierung Error Out Objektbeschreibung

(Doppelter NC/Öffner)

TY
Output

EING1	EING2	AUSG	Gleichzeitigkeitsfehler*
0	0	0	-
0	1	0	Х
1	0	0	Х
1	1	1	-

(Doppelter NC - NO/Öffner-Schließer)

EING1	EING2	AUSG	Gleichzeitigkeitsfehler*
0	0	0	Х
0	1	0	-
1	0	1	-
1	1	0	Х

* Gleichzeitigkeitsfehler = die maximale Dauer zwischen den Umschaltungen der einzelnen Kontakte wurde überschritten

Parameter

Manueller Reset: Ist diese Funktion ausgewählt, wird die Wiederanlaufsperre im Anschluss an jede Aktivierung des Funktionsbausteins aktiviert. Andernfalls folgt die Aktivierung des Ausgangs *Output* direkt dem Zustand der Eingänge.

Reset-Typ: Es gibt 2 Arten von Reset: *Manuell* und *Überwacht*. Wird die Option *Manuell* gewählt, wird nur der Übergang des Signals von 0 auf 1 überprüft. Im Fall von *Überwacht* wird der doppelte Übergang von 0 auf 1 und dann zurück auf 0 überprüft.

Hinweis

Im Fall der Aktivierung von *Manueller Reset* müssen aufeinanderfolgende Eingänge am eloProg-Modul verwendet werden. Beispiel: Werden Input 1 und 2 für *In1* und *In2* am Funktionsbaustein verwendet, muss der Input 3 für den *Reset* verwendet werden.

Test Ausgänge: Ermöglicht es auszuwählen, welche Ausgänge mit Testsignalen an die Ausgangsklemme(n) *Out Test* übertragen werden sollen. Durch diese zusätzliche Prüfung können Kurz- und Querschlüsse zwischen den Leitungen erkannt werden. Dazu müssen die Prüfsignale (Test1-Test4) konfiguriert werden.

Test beim Start: Hierdurch wird der Test beim Start des Schalters aktiviert. Dieser Test erfordert das Öffnen und Schließen des Schalters, um eine komplette Funktionsprüfung durchzuführen und den Ausgang *Output* zu aktivieren. Diese Kontrolle wird nur beim Start der Maschine verlangt (beim Einschalten des Moduls).

Filter (ms): Ermöglicht die Filterung der vom Schalter kommenden Signale. Dieser Filter ist von 3 bis 250 ms konfigurierbar und beseitigt eventuelles Kontaktprellen. Die Dauer dieses Filters beeinflusst die Gesamtreaktionszeit des Moduls.

Aktivierung Gleichzeitigkeit: Ist dies ausgewählt, wird die Kontrolle der Gleichzeitigkeit der vom Schalter kommenden Signale aktiviert.

Gleichzeitigkeit (ms): Der Schieberegler ist nur im Fall der Aktivierung des vorangegangenen Parameters aktiv. Bestimmt die maximale Zeit (in ms), die zwischen den beiden unterschiedlichen vom externen Bauteil kommenden Signalen verstreichen darf.

Aktivierung Error Out: Wenn diese Option aktiviert ist, wird ein durch den Funktionsbaustein erkannter Fehler am Ausgang *Error* signalisiert.

Objektbeschreibung: Erlaubt das Einfügen eines beschreibenden Textes der Funktion des externen Bauteils. Dieser Text wird nur im oberen Teil des Symbols eingeblendet.

SOLID STATE DEVICE (Sicherheitssensor mit Halbleiterausgängen)

Der Funktionsbaustein SOLID STATE DEVICE überprüft an den Eingängen In_x den Status eines Sicherheitssensors mit Halbleiterausgängen. Sollten die Eingänge In1 und In2 = 1 (HIGH) sein, ist der Ausgang *Output* = 1 (HIGH), andernfalls ist der Ausgang *Output* = 0 (LOW).

Parameter

Manueller Reset: Ist diese Funktion ausgewählt, wird die Wiederanlaufsperre im Anschluss an jede Unterbrechung des Sicherheitssensors aktiviert. Andernfalls folgt die Aktivierung des Ausgangs *Output* direkt dem Zustand der Eingänge.

Reset-Typ: Es gibt 2 Arten von Reset: *Manuell* und *Überwacht*. Wird die Option *Manuell* gewählt, wird nur der Übergang des Signals von 0 auf 1 überprüft. Im Fall von *Überwacht* wird der doppelte Übergang von 0 auf 1 und dann zurück auf 0 überprüft.

Hinweis

Im Fall der Aktivierung von *Manueller Reset* müssen aufeinanderfolgende Eingänge am eloProg-Modul verwendet werden. Beispiel: Werden Input 1 und 2 für *In1* und *In2* am Funktionsbaustein verwendet, muss der Input 3 für den *Reset* verwendet werden.

Test beim Start: Hierdurch wird der Test beim Start des Sicherheitssensors aktiviert. Dieser Test erfordert das Aktivieren/Deaktivieren des Sensors, um eine komplette Funktionsprüfung durchzuführen und den Ausgang *Output* zu aktivieren. Diese Kontrolle wird nur beim Start der Maschine verlangt (beim Einschalten des Moduls).

Filter (ms): Ermöglicht die Filterung der vom Sicherheitssensor kommenden Signale. Dieser Filter ist von 3 bis 250 ms konfigurierbar. Die Dauer dieses Filters beeinflusst die Gesamtreaktionszeit des Moduls.

Gleichzeitigkeit (ms): Bestimmt die maximale Zeit (in ms), die zwischen den beiden unterschiedlichen vom externen Bauteil kommenden Signalen verstreichen darf.

Aktivierung Error Out: Wenn diese Option aktiviert ist, wird ein durch den Funktionsbaustein erkannter Fehler am Ausgang *Error* signalisiert.

Objektbeschreibung: Erlaubt das Einfügen eines beschreibenden Textes der Funktion des externen Bauteils. Dieser Text wird nur im oberen Teil des Symbols eingeblendet.

FIELDBUS INPUT (Feldbuseingänge)

Ein Objekt mit nicht sicherheitsgerichteten Eingängen, dessen Status mittels Feldbus geändert wird.

Bis zu 8 virtuelle Eingänge sind möglich, wobei für jeden Eingang das Bit, dessen Zustand geändert werden soll, ausgewählt werden muss.

Sie werden auf dem Feldbus mit einem Byte dargestellt. (*Weitere Informationen siehe Anleitung der Feldbusse auf der CD-ROM eloProg.*)

LL0-LL1

Sie ermöglichen das Einfügen eines Logikpegels am Eingang einer Komponente.

LL0 -> logical level 0 (LOW)

LL1 -> logical level 1 (HIGH)

Warnung

LL0 und LL1 können nicht für die Deaktivierung der Logikanschlüsse im Programm verwendet werden.

HINWEISE

Ermöglicht die Eingabe einer Beschreibung, die an einer beliebigen Stelle positioniert werden kann.

TITEL

Fügt ein Feld mit Namen des Herstellers, Bedieners, den Projektnamen und die CRC-Nummer ein.

elobau 🕑

8.3 Funktionsbausteine des Typs SPEED MONITORING

SPEED CONTROL (Geschwindigkeitskontrolle)

Der Funktionsbaustein SPEED CONTROL vergleicht die eingestellte Geschwindigkeit mit der eines angeschlossenen Sensors (Encoder/Initiator). Der Ausgang *Over* ist LOW, wenn die gemessene Geschwindigkeit den festgelegten Grenzwert überschreitet (Überdrehzahl). Bleibt die gemessene Geschwindigkeit unter diesem Grenzwert, ist der Ausgang HIGH.

Hinweis

- Ein Fehler oder eine Funktionsstörung eines Encoders/Näherungsschalters (bzw. an dessen Anschlüsse) führt nicht automatisch zum Abschalten (LOW-Pegel) des entsprechenden Funktionsbaustein-Ausganges.
- Fehler oder eine Funktionsstörung des Encoders/ Näherungsschalters oder an der Verkabelung werden vom eloProg-Modul erkannt und am Ausgang "Error" des Funktionsbausteins ausgegeben.
- Für den Erhalt der Sicherheitsfunktion ist es erforderlich, das Fehlerbit (Ausgang "Error") mit in die Freigabe des Sicherheitskreises einzubinden (siehe unten stehende Grafik), damit im Fehlerfall eine Deaktivierung der Ausgänge herbeigeführt werden kann, wenn die Achse in Betrieb ist. Liegen keine externe Störungen/Fehler am Encoder/ Näherungsschalter an, ist der Ausgang des Funktionsbausteins "Error" = 0 (LOW).

Der Fehlerausgang "Error" wird 1 (HIGH) bei einem der folgenden Störungen:

- Fehlen des Encoders/N\u00e4herungsschalters (eines oder mehrerer Anschl\u00fcsse)
- Kongruenz-(Übereinstimmungs-)Fehler der Frequenzen an den von Encoder/Näherungsschalter kommenden Signalen
- Fehlen der Encoderversorgung (nur bei TTL-Encodern mit externer Versorgung)
- Phasen- oder Tastverhältnis-Fehler (Puls-Pausen-Verhältnis) an den vom Encoder kommenden Signalen

Parameter

Achsentyp: Definiert den Typ der Achsbewegung. Linear: Verschiebung, lineare Bewegung (z.B. optische Linie) Drehend: Bewegung um eine Achse (Rotation).

Sensortyp: Definiert den angeschlossenen Sensortyp. Linear: pnp/npn-schaltend (Initiatoren), lineare Messgeber Drehend: Rotative Messgeber, z.B. Encoder.

Hinweis

Bei Auswahl Achsentyp Drehend wird die Auswahl bei Sensortyp automatisch auf Drehend gesetzt.

Messvorrichtung:

Folgende Sensorik-Auswahlen sind möglich:

- Encoder (Drehgeber)
- Proximity (Initiator/N\"aherungsschalter)
- Encoder+Proximity (Drehgeber+Initiator)
- Proximity1+Proximity2 (2x Initiator)
- Encoder1+Encoder2 (2x Drehgeber)

Richtung aktivieren (Auswahl nur für Encoder möglich):

Durch Aktivieren dieses Parameters wird der Ausgang *Dir* auf dem Funktionsbaustein SPEED CONTROL aktiviert. Dieser Ausgang ist HIGH, wenn die Achse <u>gegen</u> den Uhrzeigersinn dreht und LOW, wenn die Achse <u>im</u> Uhrzeigersinn dreht (Blickrichtung in Richtung Welle des Encoders, siehe *Fig. 8-23*).

Richtung auswählen: Legt die Drehrichtung für die eingegebenen Grenzwerte fest (Bezugswert). Folgende Auswahlen sind möglich:

- Bidirektional (beide Drehrichtungen)
- Im Uhrzeigersinn
- Gegen den Uhrzeigersinn

Bei Bidirektional erfolgt die Messung des Überschreitens des eingegebenen (Drehzahl-)Grenzwertes sowohl im als auch gegen den Uhrzeigersinn. Wird Im Uhrzeigersinn oder Gegen den Uhrzeigersinn ausgewählt, erfolgt die Messung nur, wenn die Achse in der ausgewählten Richtung dreht.

Hinweis

Bei Auswahl *Messvorrichtung: Proximity* wird die Richtung automatisch auf *Bidirektional* gesetzt.

Schwellenanzahl (Anzahl der Geschwindigkeitsgrenzwerte):

Mögliche Auswahl:

- 1 Schwelle (Standard)
- 2 Schwellen
- 4 Schwellen

Ermöglicht das Definieren von bis zu 4 unterschiedlichen Geschwindigkeitsgrenzwerten (Schwellen), von denen allerdings immer nur einer gleichzeitig aktiv sein kann.

Die Anwahl des aktiven Grenzwertes erfolgt über die Eingänge *In1* und *In2* am Funktionsbaustein, gemäß der nebenstehenden Tabelle.

Die maximale Anzahl der anwählbaren Schwellen wird begrenzt von der gewählten Messvorrichtung.

Steigung (Werte 1...2000 mm, in 0,1 mm-Schritten):

Bei Auswahl von Achsentyp Linear und Sensortyp Drehend ermöglicht dieses Feld das Festlegen der Strecke pro Umdrehung, um eine Umrechnung zwischen den Sensorumdrehungen und der dadurch zurückgelegten Strecke zu erzielen.

Näherungsschalter Wahl: Auswahl des Näherungsschalter-Typs (Proximity).

Mögliche Parameter: PNP, NPN, Öffner (NC), Schließer (NO), bzw. Kombination Öffner/Schließer (NC/NO).

Hinweis

Um ein Performance Level PLe zu erreichen, Näherungsschalter (Proximity) des Typs PNP, NO (Schließer) verwenden; siehe *Kap. 6.1.3 Initiator-Eingang Proximity für* 485EPS2N auf Seite 6-2).

Fig. 8-23 Beispiel der Drehung der Achse im Uhrzeigersinn

Eingabe von 2 Grenzwerten				
Ir	n1	Anz. Grenzwerte		
()	Geschwindigkeit 1		
	1	Geschwindigkeit 2		
Ei	Eingabe von 4 Grenzwerten			
In2	In1	Anz. Grenzwerte		
0	0	Geschwindigkeit 1		
0	1	Geschwindigkeit 2		
1	0	Geschwindigkeit 3		
1	1	Geschwindigkeit 4		

Geber-/Näherungsschalterauflösung Messung:

In dieses Feld die Auflösung der <u>ersten</u> verwendeten Messvorrichtung eingeben (Maximalwerte in Klammern im Eigenschaften-Fenster).

Messvorrichtung Encoder (Drehgeber), Sensortyp Linear: Anzahl der $\mu\text{m}/\text{Impuls}.$

Messvorrichtung Encoder (Drehgeber), Sensortyp Drehend:

Anzahl der Impulse/Umdrehung.

Messvorrichtung Näherungsschalter (Proximity), Sensortyp *Linear*. Anzahl der µm/Impuls.

Messvorrichtung Näherungsschalter (Proximity), Sensortyp *Drehend*: Anzahl der Impulse/Umdrehung.

Geber-/Näherungsschalterauflösung Kontrolle:

In dieses Feld die Auflösung der <u>zweiten</u> Messvorrichtung (z.B. bei Auswahl *Encoder+ Proximity* die Daten des Näherungsschalters) eingeben (Maximalwerte in Klammern im Eigenschaften-Fenster). Parameter wie unter *Messung* beschrieben.

Übersetzungsverhältnis (Faktor): Verhältnis zwischen den Sensoren (unterschiedliche Drehzahlen) Sind beide Sensoren auf der gleichen Achse montiert (gleiche Drehzahl), ist der Faktor 1.

Falls die beiden Sensoren auf unterschiedlichen Achsen sitzen, bzw. unterschiedliche Drehzahlen für die beiden Sensoren vorliegen (z.B. aufgrund eines Untersetzungsverhältnisses) ist der Wert des Verhältnisses einzutragen.

Hysterese (1...50 %): Unterdrückung von Schwankungen im Messsignal:

Stellt den Hysterese-Wert in Prozent dar, unterhalb dem die Geschwindigkeitsänderung herausgefiltert wird. Um ein ständiges Schalten bei Änderung des Messsignals zu vermeiden, sollte hier ein Wert >1 eingestellt werden (Schieberegler).

Geschwindigkeit 1...4 (Anzahl gleich wie Schwellenanzahl):

In dieses Feld den Drehzahlgrenzwert (< 60.000 U/min.) für rotative Achsen, bzw. den Geschwindigkeitsgrenzwert (< 1.000 m/min.) für Linear-Achsen eingeben.

Funktionsbaustein: Bei Überschreitung des Grenzwertes ist der Ausgang *Over* LOW; liegt der gemessene Wert darunter ist dieser Ausgang dagegen HIGH.

Frequenz 1...4 (Anzahl gleich wie Schwellenanzahl):

Die Tabelle zeigt die berechneten Werte der maximalen Frequenz f_M (f_{max}), und der minimalen Frequenz f_m (f_{min}) an, verringert um die eingegebene Hysterese (%-Wert).

Sollten die angezeigten Werte GRÜN erscheinen, hat die Berechnung der Frequenzen ein positives Ergebnis ergeben; die Messparameter liegen innerhalb der Verarbeitungsgrenzen des eloProg-Moduls.

Sollten die angezeigten Werte ROT erscheinen, sind die Messparameter außerhalb der Verarbeitungsgrenzen des eloProg-Moduls. Die in den folgenden Formeln angegebenen Parameter müssen angepasst werden.

1. Frequenzberechnung für Achsentyp Drehend, Sensor Drehend

$$f[Hz] = \frac{Drehzahl [U/min]}{60} \times Auflösung [Pulse/U]$$

2. Frequenzberechnung für Achsentyp Linear, Sensor Drehend

f [Hz] = <u>Geschw. [m/min] x 1000</u> x Auflösung [Pulse/U] 60 x Steigung [mm/U]

3. Frequenzberechnung für Achsentyp Linear, Sensor Linear

 $f [Hz] = \frac{Geschw. [mm/s] \times 1000}{Auflösung [\mu m/Pulse]}$

4. Hysterese: Werte nur ändern, wenn: $f_M = GRÜN$; $f_m = ROT$

Aktivierung Error Out: Wenn diese Option aktiviert ist, wird ein durch den Funktionsbaustein erkannter Fehler am Ausgang *Error* signalisiert.

Objektbeschreibung: Erlaubt das Einfügen eines beschreibenden Textes der Funktion des externen Bauteils. Dieser Text wird nur im oberen Teil des Symbols eingeblendet.

WINDOW SPEED CONTROL (Geschwindigkeitskontrolle in Messfenster)

Der Funktionsbaustein WINDOW SPEED CONTROL vergleicht die eingestellte Geschwindigkeit mit der eines angeschlossenen Sensors (Encoder/Initiator) für einen festgelegten Bereich. Der Ausgang *Window* ist LOW, wenn die gemessene Geschwindigkeit außerhalb (unter/über) dem festgelegten Bereich (Window) liegt. Bleibt die gemessene Geschwindigkeit innerhalb dieses Fensters, ist der Ausgang *Window* HIGH.

Parameter

Achsentyp: Definiert den Typ der Achsbewegung. Linear: Verschiebung, lineare Bewegung (z.B. optische Linie) Drehend: Bewegung um eine Achse (Rotation).

Sensortyp: Definiert den angeschlossenen Sensortyp. Linear: pnp/npn-schaltend (Initiatoren), lineare Messgeber Drehend: Rotative Messgeber, z.B. Encoder.

Hinweis

Bei Auswahl *Achsentyp Drehend* wird die Auswahl bei *Sensortyp* automatisch auf *Drehend* gesetzt.

Messvorrichtung:

Folgende Sensorik-Auswahlen sind möglich:

- Encoder (Drehgeber)
- Proximity (Initiator/Näherungsschalter)
- Encoder+Proximity (Drehgeber+Initiator)
- Proximity1+Proximity2 (2x Initiator)
- Encoder1+Encoder2 (2x Drehgeber)

Steigung (Werte 1...2000 mm, in 0,1 mm-Schritten):

Bei Auswahl von *Achsentyp Linear* und *Sensortyp Drehend*, ermöglicht dieses Feld das Eingeben der Strecke pro Umdrehung, um eine Umrechnung zwischen den Sensorumdrehungen und der dadurch zurückgelegten Strecke zu erzielen.

Näherungsschalter Wahl: Auswahl des Näherungsschal-

ter-Typs (Proximity). Mögliche Parameter: PNP, NPN, Öffner (NC), Schließer (NO), bzw. Kombination Öffner/Schließer (NC/NO).

Hinweis

Um ein Performance Level PLe zu erreichen, Näherungsschalter (Proximity) des Typs PNP, NO (Schließer) verwenden; siehe Kap. 6.1.3 Initiator-Eingang Proximity für 485EPS2N auf Seite 6-2).

No Proxy PNP 3 Drähte NC PNP 3 Drähte NO NPN 3 Drähte NO NPN 3 Drähte NC PNP 4 Drähte NC/NO PNP/NPN 4 Drähte NC/NC PNP/NPN 4 Drähte NC/NC

Geber-/Näherungsschalterauflösung Messung:

In dieses Feld die Auflösung der <u>ersten</u> verwendeten Messvorrichtung eingeben (Maximalwerte in Klammern im Eigenschaften-Fenster).

Messvorrichtung Encoder (Drehgeber), Sensortyp Linear: Anzahl der $\mu\text{m}/\text{Impuls}.$

Messvorrichtung Encoder (Drehgeber), Sensortyp Drehend:

Anzahl der Impulse/Umdrehung.

Messvorrichtung Näherungsschalter (Proximity), Sensortyp *Linear*.

Anzahl der µm/Impuls.

Messvorrichtung Näherungsschalter (Proximity), Sensortyp *Drehend*: Anzahl der Impulse/Umdrehung.

Geber-/Näherungsschalterauflösung Kontrolle:

In dieses Feld die Auflösung der <u>zweiten</u> Messvorrichtung (z.B. bei Auswahl *Encoder+ Proximity* die Daten des Näherungsschalters) eingeben (Maximalwerte in Klammern im Eigenschaften-Fenster). Parameter wie unter *Messung* beschrieben.

Übersetzungsverhältnis (Faktor): Verhältnis zwischen den Sensoren (unterschiedliche Drehzahlen) Sind beide Sensoren auf der gleichen Achse montiert (gleiche Drehzahl), ist der Faktor 1.

Falls die beiden Sensoren auf unterschiedlichen Achsen sitzen, bzw. unterschiedliche Drehzahlen für die beiden Sensoren vorliegen (z.B. aufgrund eines Untersetzungsverhältnisses) ist der Wert des Verhältnisses einzutragen.

Hysterese (1...50%): Unterdrückung von Schwankungen im Messsignal:

Stellt den Hysterese-Wert in Prozent dar, unterhalb dem die Geschwindigkeitsänderung herausgefiltert wird. Um ein ständiges Schalten bei Änderung des Messsignals zu vermeiden, sollte hier ein Wert >1 eingestellt werden (Schieberegler).

Schnelle Geschwindigkeit:

In dieses Feld den Drehzahl-Maximalwert (< 60.000 U/min.) für rotative Achsen, bzw. den Geschwindigkeits-Maximalwert (< 1.000 m/min.) für Linear-Achsen eingeben.

Langsame Geschwindigkeit:

In dieses Feld den Drehzahl-Mindestwert (< 60.000 U/min.) für rotative Achsen, bzw. den Geschwindigkeits-Mindestwert (< 1.000 m/min.) für Linear-Achsen eingeben.

Funktionsbaustein: Bei Unterschreitung des Mindestwertes, sowie bei Überschreitung des Maximalwertes ist der Ausgang *Window* LOW. Liegt der gemessene Wert innerhalb der angegebenen Werte, ist der Ausgang *Window* HIGH.

Frequenz 1 und 2:

Die Tabelle zeigt die berechneten Werte der maximalen Frequenz f_M (= f_{max}), und der minimalen Frequenz f_m (= f_{min}) an, verringert um die eingegebene Hysterese (%-Wert).

Sollten die angezeigten Werte GRÜN erscheinen, hat die Berechnung der Frequenzen ein positives Ergebnis ergeben; die Messparameter liegen innerhalb der Verarbeitungsgrenzen des eloProg-Moduls.

Sollten die angezeigten Werte ROT erscheinen, sind die Messparameter außerhalb der Verarbeitungsgrenzen des eloProg-Moduls. Die in den folgenden Formeln angegebenen Parameter müssen angepasst werden.

1. Frequenzberechnung für Achsentyp Drehend, Sensor Drehend

 $f[Hz] = \frac{Drehzahl[U/min]}{60} \times Auflösung[Pulse/U]$

2. Frequenzberechnung für Achsentyp Linear, Sensor Drehend

f [Hz] = <u>Geschw. [m/min] x 1000</u> x Auflösung [Pulse/U] 60 x Steigung [mm/U]

3. Frequenzberechnung für Achsentyp Linear, Sensor Linear

f [Hz] = <u>Geschw. [mm/s] x 1000</u> Auflösung [μm/Pulse]

4. Hysterese: Werte nur ändern, wenn: $f_M = GRÜN$; $f_m = ROT$

Aktivierung Error Out: Wenn diese Option aktiviert ist, wird ein durch den Funktionsbaustein erkannter Fehler am Ausgang *Error* signalisiert.

Objektbeschreibung: Erlaubt das Einfügen eines beschreibenden Textes der Funktion des externen Bauteils. Dieser Text wird nur im oberen Teil des Symbols eingeblendet.

STAND STILL (Stillstandskontrolle)

Der Funktionsbaustein STAND STILL überprüft die Geschwindigkeit eines angeschlossenen Sensors (Encoder/Initiator) auf Stillstand, bzw. auf eine Geschwindigkeitsobergrenze. Liegt die gemessene Geschwindigkeit unterhalb des im Feld *Geschwindigkeitsgrenze Null* festgelegten Grenzwertes, ist der Ausgang *Zero* HIGH. Wird dieser Wert überschritten, geht der Ausgang *Zero* auf LOW.

Parameter

Achsentyp: Definiert den Typ der Achsbewegung.

Linear: Verschiebung, lineare Bewegung (z.B. optische Linie)

Drehend: Bewegung um eine Achse (Rotation).

Sensortyp: Definiert den angeschlossenen Sensortyp. Linear: pnp/npn-schaltend (Initiatoren), lineare Messgeber Drehend: Rotative Messgeber, z.B. Encoder.

Hinweis

Bei Auswahl *Achsentyp Drehend* wird die Auswahl bei *Sensortyp* automatisch auf *Drehend* gesetzt.

Messvorrichtung:

Folgende Sensorik-Auswahlen sind möglich:

- Encoder (Drehgeber)
- Proximity (Initiator/Näherungsschalter)
- Encoder+Proximity (Drehgeber+Initiator)
- Proximity1+Proximity2 (2x Initiator)
- Encoder1+Encoder2 (2x Drehgeber

Steigung (Werte 1...2000 mm, in 0,1 mm-Schritten):

Bei Auswahl von *Achsentyp Linear* und *Sensortyp Drehend* ermöglicht dieses Feld das Festlegen der Strecke pro Umdrehung, um eine Umrechnung zwischen den Sensorumdrehungen und der dadurch zurückgelegten Strecke zu erzielen.

Näherungsschalter Wahl:

Auswahl des Näherungsschalter-Typs (Proximity). Mögliche Parameter: PNP, NPN, Öffner (NC), Schließer (NO), bzw. Kombination Öffner/Schließer (NC/NO).

Hinweis

Um ein Performance Level PLe zu erreichen, Näherungsschalter (Proximity) des Typs PNP, NO (Schließer) verwenden; *siehe Kap. 6.1.3 Initiator-Eingang Proximity für 485EPS2N auf Seite 6-2*).

No Proxy PNP 3 Drähte NC PNP 3 Drähte NO NPN 3 Drähte NO NPN 3 Drähte NC PNP 4 Drähte NC/NO PNP/NPN 4 Drähte NC/NC PNP/NPN 4 Drähte NO/NO

Geber-/Näherungsschalterauflösung Messung:

In dieses Feld die Auflösung der <u>ersten</u> verwendeten Messvorrichtung eingeben (Maximalwerte in Klammern im Eigenschaften-Fenster).

Messvorrichtung Encoder (Drehgeber), Sensortyp Linear: Anzahl der $\mu\text{m}/\text{Impuls}.$

Messvorrichtung Encoder (Drehgeber), Sensortyp Drehend:

Anzahl der Impulse/Umdrehung.

Messvorrichtung Näherungsschalter (Proximity), Sensortyp *Linear*.

Anzahl der µm/Impuls.

Messvorrichtung Näherungsschalter (Proximity), Sensortyp *Drehend*: Anzahl der Impulse/Umdrehung.

Geber-/Näherungsschalterauflösung Kontrolle:

In dieses Feld die Auflösung der <u>zweiten</u> Messvorrichtung (z.B. bei Auswahl *Encoder+ Proximity* die Daten des Näherungsschalters) eingeben (Maximalwerte in Klammern im Eigenschaften-Fenster). Parameter wie unter *Messung* beschrieben.

Übersetzungsverhältnis (Faktor): Verhältnis zwischen den Sensoren (unterschiedliche Drehzahlen) Sind beide Sensoren auf der gleichen Achse montiert (gleiche Drehzahl), ist der Faktor 1. Falls die beiden Sensoren auf unterschiedlichen Achsen sitzen, bzw. unterschiedliche Drehzahlen für die beiden Sensoren vorliegen (z.B. aufgrund eines Untersetzungsverhältnisses) ist der Wert des Verhältnisses einzutragen.

Hysterese (1...50%): Unterdrückung von Schwankungen im Messsignal:

Stellt den Hysterese-Wert in Prozent dar, unterhalb dem die Geschwindigkeitsänderung herausgefiltert wird. Um ein ständiges Schalten bei Änderung des Messsignals zu vermeiden, sollte hier ein Wert >1 eingestellt werden (Schieberegler).

Geschwindigkeitsgrenze Null:

In dieses Feld den Drehzahlgrenzwert (< 60 U/min.) für rotative Achsen, bzw. den Geschwindigkeitsgrenzwert (< 10 m/min.) für Linear-Achsen eingeben.

Funktionsbaustein: Bei Überschreitung des Grenzwertes ist der Ausgang *Zero* LOW; liegt der gemessene Wert darunter ist der Ausgang *Zero* HIGH.

Frequenz Nullgeschwindigkeit (>= 1 Hz):

Die Tabelle zeigt die berechneten Werte der maximalen Frequenz f_M (f_{max}), und der minimalen Frequenz f_m (f_{min}) an, verringert um die eingegebene Hysterese (%-Wert).

Sollten die angezeigten Werte GRÜN erscheinen, hat die Berechnung der Frequenzen ein positives Ergebnis ergeben; die Messparameter liegen innerhalb der Verarbeitungsgrenzen des eloProg-Moduls.

Sollten die angezeigten Werte ROT erscheinen, sind die Messparameter außerhalb der Verarbeitungsgrenzen des eloProg-Moduls. Die in den folgenden Formeln angegebenen Parameter müssen angepasst werden.

1. Frequenzberechnung für Achsentyp Drehend, Sensor Drehend

 $f[Hz] = \frac{Drehzahl[U/min]}{60} \times Auflösung[Pulse/U]$

2. Frequenzberechnung für Achsentyp Linear, Sensor Drehend

f [Hz] = <u>Geschw. [m/min] x 1000</u> x Auflösung [Pulse/U] 60 x Steigung [mm/U]

3. Frequenzberechnung für Achsentyp Linear, Sensor Linear

f [Hz] = <u>Geschw. [mm/s] x 1000</u> Auflösung [μm/Pulse]

4. Hysterese: Werte nur ändern, wenn: $f_M = GRÜN$; $f_m = ROT$

Aktivierung Error Out: Wenn diese Option aktiviert ist, wird ein durch den Funktionsbaustein erkannter Fehler am Ausgang *Error* signalisiert.

Objektbeschreibung: Erlaubt das Einfügen eines beschreibenden Textes der Funktion des externen Bauteils. Dieser Text wird nur im oberen Teil des Symbols eingeblendet.

STAND STILL AND SPEED CONTROL (Geschwindigkeits- und Stillstandskontrolle)

Der Funktionsbaustein STAND STILL AND SPEED CONTROL vergleicht 2 getrennt einstellbare Geschwindigkeitenstypen (für Stillstand und Überdrehzahl) mit der eines angeschlossenen Sensors (Encoder/Initiator).

Stillstandskontrolle:

Liegt die gemessene Geschwindigkeit unterhalb des im Feld *Geschwindigkeitsgrenze Null* festgelegten Grenzwertes, ist der Ausgang *Zero* HIGH. Wird dieser Wert überschritten, geht der Ausgang *Zero* auf LOW.

Geschwindigkeitskontrolle (Überdrehzahl):

Der Ausgang *Over* ist HIGH, wenn die gemessene Geschwindigkeit unterhalb des im Feld *Geschwindigkeit* festgelegten Grenzwert liegt. Wird dieser Wert überschritten, geht der Ausgang *Over* auf LOW (Überdrehzahl).

Parameter

Achsentyp: Definiert den Typ der Achsbewegung. Linear: Verschiebung, lineare Bewegung (z.B. optische Linie) Drehend: Bewegung um eine Achse (Rotation).

Sensortyp: Definiert den angeschlossenen Sensortyp. Linear: pnp/npn-schaltend (Initiatoren), lineare Messgeber Drehend: Rotative Messgeber, z.B. Encoder.

Hinweis

Bei Auswahl Achsentyp Drehend wird die Auswahl bei Sensortyp automatisch auf Drehend gesetzt.

Messvorrichtung:

Folgende Sensorik-Auswahlen sind möglich:

- Encoder (Drehgeber)
- Proximity (Initiator/N\"aherungsschalter)
- Encoder+Proximity (Drehgeber+Initiator)
- Proximity1+Proximity2 (2x Initiator)
- Encoder1+Encoder2 (2x Drehgeber)

Richtung aktivieren (Auswahl nur für Encoder möglich):

Durch Aktivieren dieses Parameters wird der Ausgang *Dir* auf dem Funktionsbaustein STAND STILL AND SPEED CONTROL aktiviert.

Dieser Ausgang ist HIGH, wenn die Achse <u>gegen</u> den Uhrzeigersinn dreht und LOW, wenn die Achse <u>im</u> Uhrzeigersinn dreht (Blickrichtung in Richtung Welle des Encoders, siehe *Fig.* 8-24).

Fig. 8-24 *Beispiel der Drehung der Achse im Uhrzeigersinn*

Richtung auswählen: Legt die Drehrichtung für die eingegebenen Grenzwerte fest (Bezugswert). Folgende Auswahlen sind möglich:

– Bidirektional (beide Drehrichtungen)

- Im Uhrzeigersinn
- Gegen den Uhrzeigersinn

Bei Bidirektional erfolgt die Messung des Überschreitens des eingegebenen (Drehzahl-)Grenzwertes sowohl im, als auch gegen den Uhrzeigesinn. Wird Im Uhrzeigersinn oder Gegen den Uhrzeigersinn ausgewählt, erfolgt die Messung nur, wenn die Achse in der ausgewählten Richtung dreht.

Hinweis

Bei Auswahl *Messvorrichtung: Proximity* wird die Richtung automatisch auf *Bidirektional* gesetzt.

Schwellenanzahl (Anzahl der Geschwindigkeitsgrenzwerte):

Mögliche Auswahl:

- 1 Schwelle (Standard)
- 2 Schwellen
- 4 Schwellen

Ermöglicht das Definieren von bis zu 4 unterschiedlichen Geschwindigkeitsgrenzwerten (Schwellen), von denen allerdings immer nur einer gleichzeitig aktiv sein kann.

Die Anwahl des aktiven Grenzwertes erfolgt über die Eingänge *In1* und *In2* am Funktionsbaustein, gemäß der nebenstehenden Tabelle.

Die maximale Anzahl der anwählbaren Schwellen wird begrenzt von der gewählten Messvorrichtung.

Steigung (Werte 1...2000 mm, in 0,1 mm-Schritten):

Bei Auswahl von *Achsentyp Linear* und *Sensortyp Drehend* ermöglicht dieses Feld das Festlegen der Strecke pro Umdrehung, um eine Umrechnung zwischen den Sensorumdrehungen und der dadurch zurückgelegten Strecke zu erzielen.

Näherungsschalter Wahl:

Auswahl des Näherungsschalter-Typs (Proximity). Mögliche Parameter: PNP, NPN, Öffner (NC), Schließer (NO), bzw. Kombination Öffner/Schließer (NC/NO)

Hinweis

Um ein Performance Level PLe zu erreichen, Näherungsschalter (Proximity) des Typs PNP, NO (Schließer) verwenden; siehe *Kap. 6.1.3 Initiator-Eingang Proximity für 485EPS2N auf Seite 6-2*).

Geber-/Näherungsschalterauflösung Messung:

In dieses Feld die Auflösung der <u>ersten</u> verwendeten Messvorrichtung eingeben (Maximalwerte in Klammern im Eigenschaften-Fenster).

Messvorrichtung Encoder (Drehgeber), Sensortyp *Linear*: Anzahl der µm/Impuls. Messvorrichtung Encoder (Drehgeber), Sensortyp *Drehend*: Anzahl der Impulse/Umdrehung. Messvorrichtung Näherungsschalter (Proximity), Sensortyp *Linear*:

Anzahl der µm/Impuls.

Messvorrichtung Näherungsschalter (Proximity), Sensortyp *Drehend*: Anzahl der Impulse/Umdrehung.

Eingabe von 2 Grenzwerten			
Ir	n1	Anz. Grenzwerte	
()	Geschwindigkeit 1	
	1	Geschwindigkeit 2	
Eing	abe von 4	4 Grenzwerten	
In2	In1	Anz. Grenzwerte	
0	0	Geschwindigkeit 1	
0	1	Geschwindigkeit 2	
1	0	Geschwindigkeit 3	
1	1	Geschwindigkeit 4	

Geber-/Näherungsschalterauflösung Kontrolle:

In dieses Feld die Auflösung der <u>zweiten</u> Messvorrichtung (z.B. bei Auswahl *Encoder+ Proximity* die Daten des Näherungsschalters) eingeben (Maximalwerte in Klammern im Eigenschaften-Fenster). Parameter wie unter *Messung* beschrieben.

Übersetzungsverhältnis (Faktor): Verhältnis zwischen den Sensoren (unterschiedliche Drehzahlen) Sind beide Sensoren auf der gleichen Achse montiert (gleiche Drehzahl), ist der Faktor 1.

Falls die beiden Sensoren auf unterschiedlichen Achsen sitzen, bzw. unterschiedliche Drehzahlen für die beiden Sensoren vorliegen (z.B. aufgrund eines Untersetzungsverhältnisses) ist der Wert des Verhältnisses einzutragen.

Hysterese (1...50%): Unterdrückung von Schwankungen im Messsignal:

Stellt den Hysterese-Wert in Prozent dar, unterhalb dem die Geschwindigkeitsänderung herausgefiltert wird. Um ein ständiges Schalten bei Änderung des Messsignals zu vermeiden, sollte hier ein Wert >1 eingestellt werden (Schieberegler).

Geschwindigkeitsgrenze Null:

In dieses Feld den Drehzahlgrenzwert (< 60 U/min.) für rotative Achsen, bzw. den Geschwindigkeitsgrenzwert (< 10 m/min.) für Linear-Achsen eingeben.

Funktionsbaustein: Bei Überschreitung des Grenzwertes ist der Ausgang Zero LOW; liegt der gemessene Wert darunter ist der Ausgang Zero HIGH.

Geschwindigkeit 1...4 (Anzahl gleich wie Schwellenanzahl):

In dieses Feld den Drehzahlgrenzwert (< 60.000 U/min.) für rotative Achsen, bzw. den Geschwindigkeitsgrenzwert (< 1.000 m/min.) für Linear-Achsen eingeben.

Funktionsbaustein: Bei Überschreitung des Grenzwertes ist der Ausgang *Over* LOW; liegt der gemessene Wert darunter ist dieser Ausgang dagegen HIGH.

Frequenz Nullgeschwindigkeit (>= 1 Hz) und Frequenz Geschwindigkeiten 1...4:

Die Tabelle zeigt die berechneten Werte der maximalen Frequenz f_M (f_{max}), und der minimalen Frequenz f_m (f_{min}) an, verringert um die eingegebene Hysterese (%-Wert).

Sollten die angezeigten Werte GRÜN erscheinen, hat die Berechnung der Frequenzen ein positives Ergebnis ergeben; die Messparameter liegen innerhalb der Verarbeitungsgrenzen des eloProg-Moduls.

Sollten die angezeigten Werte ROT erscheinen, sind die Messparameter außerhalb der Verarbeitungsgrenzen des eloProg-Moduls. Die in den folgenden Formeln angegebenen Parameter müssen angepasst werden.

1. Frequenzberechnung für Achsentyp Drehend, Sensor Drehend

 $f[Hz] = \frac{Drehzahl[U/min]}{60} \times Auflösung[Pulse/U]$

2. Frequenzberechnung für Achsentyp Linear, Sensor Drehend

f [Hz] = <u>Geschw. [m/min] x 1000</u> x Auflösung [Pulse/U] 60 x Steigung [mm/U]

3. Frequenzberechnung für Achsentyp Linear, Sensor Linear

f [Hz] = <u>Geschw. [mm/s] x 1000</u> Auflösung [μm/Pulse]

4. Hysterese: Werte nur ändern, wenn: $f_M = GRÜN$; $f_m = ROT$

Aktivierung Error Out: Wenn diese Option aktiviert ist, wird ein durch den Funktionsbaustein erkannter Fehler am Ausgang *Error* signalisiert.

Objektbeschreibung: Erlaubt das Einfügen eines beschreibenden Textes der Funktion des externen Bauteils. Dieser Text wird nur im oberen Teil des Symbols eingeblendet.

8.3.1 GUARD LOCK-Funktionsbausteine

GUARD LOCK: Für Sicherheitszuhaltungen ohne Überwachungskontakte des Sperrmittels

Der Funktionsbaustein GUARD LOCK überprüft die Übereinstimmung folgender Signale von Sicherheitszuhaltungen:

- "Unlock_cmd" (Anfordern der Tür)
- "Gate" (Status der Schutztür/tor, offen/geschlossen)
- "Lock_fbk" (Status der Zuhaltung, entsperrt/gesperrt)
- "Reset, Manuell oder Überwacht" (Wiederanlaufsperre)

Der Ausgang *Output* ist HIGH, wenn die Verriegelung geschlossen und gesperrt ist.

Anschlüsse

Eingang Gate:

Der Eingang *Gate* erfasst den Status (Feedback) der/des Tür/Tors, an welcher die Sicherheitszuhaltung montiert ist.

Die Kontakte des Sicherheitskreises der Zuhaltung werden an den Eingangsbaustein E-GATE, bzw. SINGLE E-GATE angeschlossen, dessen Ausgang *Output* mit dem Eingang *Gate* von GUARD LOCK verbunden wird.

Eingang Lock fbk:

Der Eingang *Lock_fbk* erfasst den Status (Feedback) des Elektromagneten, der die Zuhaltung sperrt/ freigibt. Die Kontakte des Überwachungskreises der Verriegelung werden an den Eingangsbaustein LOCK FEEDBACK angeschlossen, dessen Ausgang *Output* mit dem Eingang *Lock_fbk* von GUARD LOCK angeschlossen wird.

Eingang UnLock cmd:

Der Eingang UnLock cmd dient dem Anfordern der Tür (Entriegelungsanforderung).

Der Eingang muss dabei so lange HIGH bleiben (Taster gedrückt halten), bis der Funktionsbaustein die Tür freigibt (siehe auch nachfolgender *Abschnitt Funktionsprinzip*).

Hinweis

Beachten Sie dazu unbedingt die Hinweise unter Aktivierung Error Out.

Ausgang Output:

An den Ausgang *Output* des GUARD-LOCK-Funktionsbausteins werden die Sicherheitsausgänge (OSSD oder Sicherheitsrelais) angeschlossen. *Output* ist HIGH, wenn die Schutztür geschlossen (HIGH-Pegel am Eingang *Gate*) und die Verriegelung gesperrt ist (HIGH am Eingang *Lock fbk*).

Ausgang LockOut:

An den Ausgang LockOut wird die Versorgung des Magneten (Ent-/Verriegelung) angeschlossen.

Funktionsprinzip

Zuhaltungen mit Ruhestromprinzip (federkraftverriegelt):

Die Option Federverriegelung muss aktiviert sein.

Erfolgt mit HIGH ein Freigabebefehl auf den Eingang *UnLock cmd* (Tür anfordern), geht der Ausgang *Output* sofort auf LOW und die Verriegelung wird nach der eingestellten Zeit *UnLock Zeit* freigegeben, indem der Ausgang *LockOut* auf HIGH geht und so lange auf HIGH bleibt, bis die Tür wieder geschlossen wird.

Zuhaltungen mit Arbeitsstromprinzip (magnetverriegelt):

Die Option Federverriegelung muss deaktiviert sein.

Erfolgt mit HIGH ein Freigabebefehl auf den Eingang *UnLock cmd* (Tür anfordern), geht der Ausgang *Output* sofort auf LOW und die Verriegelung wird nach der eingestellten Zeit *UnLock Zeit* freigegeben, indem der Ausgang *LockOut* auf LOW geht und solange auf LOW bleibt, bis die Tür wieder geschlossen wird.

Parameter

UnLock Zeit (Zeitversatz bis zur Freigabe) in s: Die Zeit, die zwischen dem Anfordern der Tür (HIGH am Eingang *UnLock cmd*) und dem Freigeben der Tür (HIGH oder LOW am Ausgang *Lock-Out,* abhängig vom Zuhaltungs-Funktionsprinzip) vergehen soll. Diese Zeit ist so zu bemessen, dass die gefahrbringende Bewegung sicher stillgesetzt ist, bevor die Türfreigabe erfolgt.

- 0 ms \div 1 s, in 0,1 s-Schritten
- 1,5 s ÷ 10 s, in 0,5 s-Schritten
- 15 s ÷ 25 s, in 5 s-Schritten

Feedback Zeit in s: Verzögerungszeit (Reaktionszeit) der Verriegelung, vom Signalwechsel am Ausgang *LockOut* bis zur entsprechenden Reaktion (Feedback) am Eingang *Lock fbk.*

- 10 ms ÷ 100 s, in 10 ms-Schritten
- 150 ms ÷ 1 s, in 50 ms-Schritten
- 1,5 s ÷ 3 s, in 0,5 s-Schritten

Bedingung: Feedback-Zeit ≥ Zeit der Aktivierung des Elektromagneten

Federverriegelung (Option für Sicherheitszuhaltungen nach dem Ruhestromprinzip anwählen):

Die Sicherheitszuhaltung wird durch Federkraft verriegelt (Ruhestromprinzip). Zum Entriegeln muss eine Spannung an den Zuhaltemagnet gelegt werden. Für Zuhaltungen nach dem Arbeitsstromprinzip (durch Magnet verriegelt) darf diese Option nicht angewählt werden.

Manueller Reset: Diese Funktion aktiviert die Wiederanlaufsperre im Anschluss an jede Aktivierung der BWS (E-Gate). Andernfalls folgt die Aktivierung des Ausgangs direkt dem Zustand der Eingänge.

Reset-Typ: Es gibt 2 Arten von Reset: *Manuell* und *Überwacht*. Wird die Option *Manuell* gewählt, wird nur der Übergang des Signals von 0 auf 1 überprüft. Im Fall von *Überwacht* wird der doppelte Übergang von 0 auf 1 und dann zurück auf 0 kontrolliert.

Hinweis

Im Fall der Aktivierung von *Manueller Reset* müssen aufeinanderfolgende Eingänge am eloProg-Modul verwendet werden. Beispiel: Werden Input 1, 2 und 3 für *Gate*, *Lock fbk* und *UnLock cmd* verwendet, muss der Input 4 für den *Reset* verwendet werden.

Aktivierung Error Out: Wenn diese Option aktiviert ist, wird ein durch den Funktionsbaustein erkannter Fehler am Ausgang *Error* signalisiert.

Hinweis

Der Ausgang *Error Out* ist auch dann HIGH, wenn am Eingang *UnLock cmd* ein LOW (Tür nicht angefordert) und am Eingang *Lock fbk* ein LOW (Tür nicht verriegelt, z.B. bei gezogenem Betätiger/geöffneter Tür) anliegt. Sobald der Eingang *Lock fbk* wieder HIGH wird (Tür wieder verriegelt, bzw. Betätiger gesteckt), geht der Ausgang *Error Out* wieder auf LOW.

Betriebsart ohne Gate (Auswahl: "Gate nicht vorhanden")

Diese Betriebsart ist nicht geeignet für Sicherheitszuhaltungen, welche über Sicherheitskontakte mit Überwachung der Sperrmittels verfügen.

Beispiel der Betriebsart ohne Gate:

Im nachstehenden Beispiel fordert der Benutzer die Verriegelung (Schutzeinrichtung) mit der am Eingangsblock SWITCH angeschlossenen Taste an. Das Signal *LockOut* (GUARD LOCK) steuert den Ausgang *Output* des Ausgabebausteins STATUS, an dem der Elektromagnet (Spule) der Verriegelung angeschlossen ist.

Der Status (Feedback) der Zuhaltung (entsperrt/gesperrt) wird vom Eingabebaustein LOCK FEEDBACK erfasst und an den Eingang *Lock_fbk* (GUARD LOCK) weitergeleitet. Der Ausgang *Output* (GUARD LOCK) steuert den Sicherheitskreis (OSSD-Ausgänge).

Die im Beispiel verwendete Verriegelung bleibt gesperrt, wenn der Elektromagnet nicht bestromt wird. Daher muss für diese Verriegelung die Option "Federverriegelung" ausgewählt werden.

Fig. 8-25 Betriebsart ohne Gate

In Fig. 8-26 werden die Signale der Verriegelung dargestellt. Der Ablauf wird nachfolgend erläutert.

- (1) Anfordern der Freigabe der Verriegelung (Tür anfordern) durch HIGH-Signal am Eingang *UnLock-cmd* (drücken der Anforderungs-Taste durch den Bediener). Der Ausgang *Output* wechselt unmittelbar auf LOW.
- (2) Nach Ablauf der eingestellten UnLock Zeit (500 ms) wird der Ausgang *LockOut* auf HIGH gesetzt. Der Elektromagnet wird dadurch bestromt und die Zuhaltung entsperrt.
- (3) Technisch-physikalisch bedingt reagiert der Elektromagnet mit einer Verzögerung (im Beispiel ca. 95ms). Der Anzug des Elektromagneten wird am Eingang Lock_fbk registriert (Signalwechsel am Ausgang von LOCK FEEDBACK von HIGH nach LOW). Dieser Verzug wird mit dem Parameter "Feedback Zeit" (10ms...3s) überwacht. Der Wert muss dabei >= der Reaktionszeit des Elektromagneten sein.
- (4) Der Bediener lässt die Anforderungs-Taste wieder los, der Eingang *UnLock_cmd* und der Ausgang *LockOut* wechseln unmittelbar auf LOW.
- (5) Nach der erwähnten Reaktionszeit des Elektromagneten (welche auch beim Deaktivieren wirkt) sperrt die Zuhaltung wieder, was durch HIGH-Signal am Eingang *Lock_fbk* registriert wird.
- (6) Sobald GUARD LOCK den Sperrungszustand erfasst hat, wechselt der Ausgang *Output* und die OSSD-Ausgänge wieder auf HIGH.

Betriebsart mit Gate

Die Option "Gate nicht vorhanden" darf hierbei nicht angewählt werden.

Diese Betriebsart ist geeignet für Sicherheitszuhaltungen, deren Sicherheitskontakte über keine Überwachung der Sperrmittels verfügen; z.B. elobau-Sicherheitszuhaltungen Typen ZMR/ZMA. Der Sicherheitskreis (E-GATE) wird hier vom Funktionsbaustein GUARD LOCK überwacht.

Beispiel der Betriebsart mit Gate

Im nachstehenden Beispiel fordert der Benutzer die Verriegelung (Schutzeinrichtung) mit der am Eingangsblock SWITCH angeschlossenen Taste an. Das Signal *LockOut* (GUARD LOCK) steuert den Ausgang *Output* des Ausgabebausteins STATUS, an dem der Elektromagnet (Spule) der Verriegelung angeschlossen ist.

Der Status (Feedback) der Zuhaltung (entsperrt/gesperrt) wird vom Eingabebaustein LOCK FEED-BACK erfasst und an den Eingang *Lock_fbk* (GUARD LOCK) weitergeleitet. Der Ausgang *Output* (GUARD LOCK) steuert den Sicherheitskreis (OSSD-Ausgänge). Der Status der Schutzeinrichtung (Tür/Tor) wird vom Eingangsbaustein EGATE erfasst und an den Eingang *Gate* (GUARD LOCK) weitergeleitet.

Die im Beispiel verwendete Verriegelung bleibt gesperrt, wenn der Elektromagnet nicht bestromt wird. Daher muss für diese Verriegelung die Option "Federverriegelung" ausgewählt werden.

Fig. 8-27 Beispiel der Betriebsart mit Gate

In Fig. 8-28 werden die Signale der Verriegelung dargestellt. Der Ablauf wird nachfolgend erläutert.

- (1) Anfordern der Freigabe der Verriegelung (Tür anfordern) durch HIGH-Signal am Eingang *UnLock-cmd* (drücken der Anforderungs-Taste durch den Bediener). Der Ausgang *Output* wechselt unmittelbar auf LOW.
- (2) Nach Ablauf der eingestellten UnLock Zeit (500 ms) wird der Ausgang *LockOut* auf HIGH gesetzt. Der Elektromagnet wird dadurch bestromt und die Zuhaltung entsperrt.
- (3) Technisch-physikalisch bedingt reagiert der Elektromagnet mit einer Verzögerung (im Beispiel ca. 95ms). Der Anzug des Elektromagneten wird am Eingang Lock_fbk registriert (Signalwechsel am Ausgang von LOCK FEEDBACK von HIGH nach LOW). Dieser Verzug wird mit dem Parameter "Feedback Zeit" (10ms...3s) überwacht. Der Wert muss dabei >= der Reaktionszeit des Elektromagneten sein.
- (4) Der Bediener öffnet die entsperrte Tür, was vom Eingangsbaustein EGATE registriert wird (Öffnerkontakte werden geöffnet), der Ausgang *Output* (EGATE) und somit der Eingang *Gate* (GUARD LOCK) wechseln auf LOW.
- (5) Die Tür wird vom Benutzer wieder geschlossen, das Signal am Eingang *Gate* (GUARD LOCK) wird wieder HIGH.

- (6) Der Bediener lässt die Anforderungs-Taste wieder los, der Eingang *UnLock_cmd* und der Ausgang *LockOut* wechseln unmittelbar auf LOW.
- (7) Nach der erwähnten Reaktionszeit des Elektromagneten (welche auch beim Deaktivieren wirkt) sperrt die Zuhaltung wieder, was durch HIGH-Signal am Eingang *Lock_fbk* registriert wird.
- (8) Sobald GUARD LOCK den Sperrungszustand erfasst hat, wechselt der Ausgang *Output* und die OSSD-Ausgänge wieder auf HIGH.

Hinweis

Bis zum erneuten Schließen der Tür (Punkt 5) muss das Signal *UnLock_cmd* mindestens anliegen. Damit nicht während der gesamten Entriegelungsphase die Anforderungs-Taste gehalten werden muss, empfiehlt sich die Verwendung von Speicherbausteinen. Entsprechende Schaltbeispiele sind auf Anfrage bei elobau erhältlich.

elobau 🕑

Betriebsart mit Öffnen der Schutzeinrichtung (Tür/Tor) als Bedingung (Anwahl Gate zwingend öffnen)

Diese Betriebsart wird durch Anwahl der Option *Gate zwingend öffnen* ausgewählt (nur anwählbar, wenn Gate nicht vorhanden nicht angewählt ist).

Die Ein- und Ausgänge, die Signale und das Verhalten des Funktionsbausteins entsprechen dem der vorangegangenen Betriebsarten, mit dem Unterschied, dass nach dem Anfordern der Tür (*UnLock-cmd*) die Tür auch tatsächlich geöffnet werden muss. Die Bestätigung muss durch den Signalwechsel (Feedback) am Eingang *Gate* erfolgen.

Beispiel der Betriebsart Öffnen der Schutzeinrichtung (Tür/Tor) als Bedingung.

Im nachstehenden Beispiel fordert der Benutzer die Verriegelung (Schutzeinrichtung) mit der am Eingangsblock SWITCH angeschlossenen Taste an. Das Signal *LockOut* (GUARD LOCK) steuert den Ausgang *Output* des Ausgabebausteins STATUS, an dem der Elektromagnet (Spule) der Verriegelung angeschlossen ist.

Der Status (Feedback) der Zuhaltung (entsperrt/gesperrt) wird vom Eingabebaustein LOCK FEED-BACK erfasst und an den Eingang *Lock_fbk* (GUARD LOCK) weitergeleitet. Der Ausgang *Output* (GUARD LOCK) steuert den Sicherheitskreis (OSSD-Ausgänge).

Der Status des Gate (Tür/Tor) wird vom Eingang *Gate* (GUARD LOCK) über den Eingabebaustein E-GATE überwacht. Die Option *Gate zwingend öffnen* ist angewählt.

Die im Beispiel verwendete Verriegelung bleibt gesperrt, wenn der Elektromagnet nicht bestromt wird. Daher muss für diese Verriegelung die Option "Federverriegelung" ausgewählt werden.

Fig. 8-29 Beispiel der Betriebsart mit Verpflichtung des Gate-Öffnens

In *Fig.* 8-30 werden die Signale der Verriegelung dargestellt. Der Ablauf wird nachfolgend erläutert.

- (1) Anfordern der Freigabe der Verriegelung (Tür anfordern) durch HIGH-Signal am Eingang *UnLock-cmd* (drücken der Anforderungs-Taste durch den Bediener). Der Ausgang *Output* wechselt unmittelbar auf LOW.
- (2) Nach Ablauf der eingestellten UnLock Zeit (500 ms) wird der Ausgang *LockOut* auf HIGH gesetzt. Der Elektromagnet wird dadurch bestromt und die Zuhaltung entsperrt.
- (3) Technisch-physikalisch bedingt reagiert der Elektromagnet mit einer Verzögerung (im Beispiel ca. 95ms). Der Anzug des Elektromagneten wird am Eingang Lock_fbk registriert (Signalwechsel am Ausgang von LOCK FEEDBACK von HIGH nach LOW). Dieser Verzug wird mit dem Parameter "Feedback Zeit" (10ms...3s) überwacht. Der Wert muss dabei >= der Reaktionszeit des Elektromagneten sein.
- (4) Der Bediener öffnet die entsperrte Tür (bis zu diesem Zeitpunkt muss das Signal *UnLock_cmd* mindestens anliegen), was vom Eingangsbaustein EGATE registriert wird (Öffnerkontakte werden geöffnet), der Ausgang *Output* (EGATE) und somit der Eingang *Gate* (GUARD LOCK) wechseln auf LOW.
- (5) Die Tür wird vom Benutzer wieder geschlossen, das Signal am Eingang *Gate* (GUARD LOCK) wird wieder HIGH.

- (6) Der Bediener lässt die Anforderungs-Taste wieder los, der Eingang *UnLock_cmd* und der Ausgang *LockOut* wechseln unmittelbar auf LOW.
- (7) Nach der erwähnten Reaktionszeit des Elektromagneten (welche auch beim Deaktivieren wirkt) sperrt die Zuhaltung wieder, was durch HIGH-Signal am Eingang *Lock_fbk* registriert wird.
- (8) Sobald GUARD LOCK den Sperrungszustand erfasst hat, wechselt der Ausgang *Output* und die OSSD-Ausgänge wieder auf HIGH.

Fig. 8-30 Verlauf der Spuren in Bezug auf die Funktionsweise des Guard Lock-Blocks in der Betriebsart mit Verpflichtung des Gate-Öffnens

In der Betriebsart *Gate zwingend öffnen* meldet der Funktionsbaustein GUARD LOCK einen Fehler, wenn das Öffnen der Tür nach der Freigabe nicht erfolgt ist. Wenn die Option *Aktivierung Error Out* angewählt wurde, wird der Fehler-Status am Ausgang *ErrorOut* mit einem HIGH-Signal ausgegeben (*Fig. 8-31*).

Wie in den vorangegangenen Beispielen wird vom Benutzer die Tür angefordert und von GUARD LOCK entsperrt, jedoch nicht geöffnet. Nach Loslassen der Anforderungs-Taste (Beenden des Signals *UnLock-cmd*, blaue Linie), wird die Tür wird gesperrt (Beenden des Signals *LockOut*, rote Linie), ohne dass das Öffnen der Tür (Signal *Gate*, rosafarbene Linie) erfasst worden wäre (Tür wurde nicht geöffnet). Der Ausgang *ErrorOut* (hellgrüne Linie) wird auf HIGH gesetzt.

Fig. 8-31 Beispiel einer möglichen Störung im Modus "Verpflichtung Öffnen Gate"

Hinweis

In diesem Fall wird der Fehler generiert, weil die Tür nie geöffnet wird, obwohl eine Anfrage zum Freigeben/Blockieren der Verriegelung erfolgt ist.

8.4 Operatoren (Verarbeitungsbausteine)

Die Signale der **Eingänge** jedes Verarbeitungsbausteins **können invertiert werden** (logisch: NOT), indem man den Cursor auf dem entsprechenden Pin positioniert (z.B. *In1*) und die rechte Maustaste betätigt. Es erscheint ein Ring, der die Umkehr des Signals anzeigt. Beim nächsten Betätigen der rechten Maustaste wird die Signalumkehr (der Ring) wieder gelöscht.

Hinweis

Die maximale Anzahl von Verarbeitungsbausteinen beträgt 64.

8.4.1 Logik-Funktionsbaustein

AND (UND): UND-Funktionsbaustein

Der Logik-Funktionsbaustein *AND* ergibt am Ausgang *Output* HIGH, wenn sich alle Eingänge In_x auf HIGH befinden.

In ₁	In ₂	ln _x	Out
0	0	0	0
1	0	0	0
0	1	0	0
1	1	0	0
0	0	1	0
1	0	1	0
0	1	1	0
1	1	1	1

Parameter

Anzahl der Eingänge: Auswahlfeld für die Anzahl der Eingänge In_x (2 bis 8).

NAND (NICHT-UND): UND-Funktionsbaustein mit invertiertem Ausgang

Der Logik-Funktionsbaustein *NAND* ergibt am Ausgang *Output* LOW, wenn alle Eingänge HIGH sind.

In ₁	In ₂	ln _x	Out
0	0	0	1
1	0	0	1
0	1	0	1
1	1	0	1
0	0	1	1
1	0	1	1
0	1	1	1
1	1	1	0

Parameter

Anzahl der Eingänge: Auswahlfeld für die Anzahl der Eingänge In_x (2 bis 8).

NOT (NICHT): Inverter-Funktionsbaustein

Der Logik-Funktionsbaustein *NOT* kehrt den logischen Status des Eingangs *In* um.

In	Out
0	1
1	0

Output Output

Eigenschaft

2 🔽 Anzahl der Eingaenge

OR

Hinweis

Durch die Möglichkeit des Invertierens von Eingängen (siehe *Hinweise am Abschnitts-beginn*) lassen sich NOT-Glieder in der Konfiguration teilweise einsparen.

OR (ODER): ODER-Funktionsbaustein

Der Logik-Funktionsbaustein OR ergibt im Ausgang *Output* HIGH, wenn sich mindestens ein Eingang In_x auf HIGH befindet.

In ₁	In ₂	ln _x	Out
0	0	0	0
1	0	0	1
0	1	0	1
1	1	0	1
0	0	1	1
1	0	1	1
0	1	1	1
1	1	1	1

Parameter

Anzahl der Eingänge: Auswahlfeld für die Anzahl der Eingänge In, (2 bis 8).

NOR (NICHT-ODER): ODER-Funktionsbaustein mit invertiertem Ausgang

Der Logik-Funktionsbaustein *NOR* ergibt am Ausgang LOW, wenn sich mindestens ein Eingang In_x auf HIGH befindet.

In ₁	In ₂	In _x	Out
0	0	0	1
1	0	0	0
0	1	0	0
1	1	0	0
0	0	1	0
1	0	1	0
0	1	1	0
1	1	1	0

elobau 🕑

XOR (EXCLUSIV-ODER): Antivalenz-Funktionsbaustein

Der Logik-Funktionsbaustein *XOR* ergibt am Ausgang *Output* HIGH, wenn die **Anzahl der Eingänge** In_x im Zustand HIGH ungerade ist.

In allen anderen Fällen ist der Ausgang LOW.

In ₁	In ₂	ln _x	Out	Ergebnis Verknüpfung
0	0	0	0	alle LOW
1	0	0	1	HIGH, ungerade
0	1	0	1	HIGH, ungerade
1	1	0	0	HIGH, gerade
0	0	1	1	HIGH, ungerade
1	0	1	0	HIGH, gerade
0	1	1	0	HIGH, gerade
1	1	1	1	HIGH, ungerade

Parameter

Anzahl der Eingänge: Auswahlfeld für die Anzahl der Eingänge In_x (2 bis 8).

XNOR (EXCLUSIV-NICHT-ODER): Äquivalenz-Funktionsbaustein

Der Logik-Funktionsbaustein *XNOR* funktioniert im Prinzip wie der Logik-Funktionsbaustein *XOR* mit invertiertem (negiertem) Ausgang. Der Logik-Funktionsbaustein *XOR* hat am Ausgang *Output* HIGH, wenn die Anzahl der Eingänge In_x im Zustand HIGH gerade ist, oder die Eingänge In_x alle LOW sind.

In ₁	In ₂	In _x	Out	Ergebnis Verknüpfung
0	0	0	1	alle LOW
1	0	0	0	HIGH, ungerade
0	1	0	0	HIGH, ungerade
1	1	0	1	HIGH, gerade
0	0	1	0	HIGH, ungerade
1	0	1	1	HIGH, gerade
0	1	1	1	HIGH, gerade
1	1	1	0	HIGH, ungerade

Parameter

Anzahl der Eingänge: Auswahlfeld für die Anzahl der Eingänge In_x (2 bis 8).

Logical Macro

Dieses Logik-Modul beinhaltet zwei oder drei zusammengeschaltete (gruppierte) logische Funktionsbausteine.

Die Logik der Einzelbausteine kann im Eigenschaftenbereich gewählt werden. Es stehen insgesamt 8 Eingänge (maximal!) zur Verfügung.

Das Ergebnis des/der Eingangs-Logik-Funktionsbausteins fließt in einen dritten Logik-Funktionsbaustein ein, dessen Ergebnis den Ausgang OUPUT des Macros bildet.

Parameter

Eingänge Logik 1, 2:

Ermöglicht das Auswählen der Anzahl der logischen Eingänge (1 bis 7). Wird ein Eingang auf "1" gewählt, wird die entsprechende Logik deaktiviert und der Eingang direkt an die Endlogik (dritter Logik-Funktionsbaustein) angeschlossen (siehe nebenstehende Grafik).

Logik 1 , 2 , 3 auswählen: Ermöglicht die Auswahl des Logiktyps: AND , NAND , OR , NOR , XOR , XNOR.

Out 1, 2 aktivieren: Ermöglicht die Ausgabe des Ergebnisses der Eingangsbausteine auf den Ausgang *LogicOut.*

MULTIPLEXER: Selektionsschalter

Der Logik-Funktionsbaustein MULTIPLEXER selektiert 1 aus bis max. 4 Signaleingängen In_x und legt das ausgewählte Signal auf den Ausgang *Output*.

Zur Auswahl des gewünschten Signaleingangs In_x wird der entsprechende Selektionseingang SeI_x mit HIGH angesteuert. Dabei darf immer nur 1 Selektionseingang gleichzeitig mit HIGH angesteuert sein.

Sollte kein Selektionseingang, oder mehr als einer auf HIGH liegen (= ungültiger Zustand), geht der Ausgang *Output* auf LOW - unabhängig vom Status der Eingänge.

Wahrheitstabelle (Beispiele):

In1	In2	ln3	In4	Sel1	Sel2	Sel3	Sel4	Out	Bemerkungen
1	0	0	0	0	0	0	0	0	Kein Eingang selektiert
1	0	0	0	1	0	0	0	1	Eingang HIGH selektiert
0	1	1	1	1	0	0	0	0	Eingang LOW selektiert
0	1	1	1	0	1	0	0	1	Eingang HIGH selektiert
0	1	1	1	0	1	1	0	0	Eingänge 2+3 selektiert = ungültig

Parameter

Input: Auswahlfeld für die Anzahl der Eingänge In_x (2 bis 4).

Hinweis

Da die Selektionseingänge Sel_x den Eingängen In_x direkt zugeordnet sind, werden diese automatisch in der korrekten Anzahl mit ausgewählt.

Eigenschaft

🗸 Aktivierung Reset

🗸 Aktivierung Clear

D FLIP FLOP

D FLIP FLOP

8.4.2 Speicherbausteine

Speicherbausteine bieten die Möglichkeit, Signale (HIGH oder LOW) zu speichern (z.B. von anderen Projektkomponenten) um diese nach Bedarf wieder weiter zu verarbeiten.

Die Statusänderungen erfolgen in Übereinstimmung mit den Wahrheitstabellen, die für jeden einzelnen Operator gezeigt wurden.

D FLIP FLOP: Daten-FlipFlop, taktflankengesteuert

Der Funktionsbaustein D FLIP FLOP ermöglicht das Speichern eines Signals, das am Dateneingang Danliegt. Die Speicherung wird mit dem Takteingang Ckgesteuert. Der Wert am Eingang D wird an den Ausgang Q (gemäß der nachfolgenden Wahrheitstabelle) mit der steigenden Flanke des Taktsignals Ck übernommen.

Preset	Clear	Ck	D	Q
1	0	X*	Х*	1
0	1	X*	Х*	0
1	1	X*	X*	0
0	0	0	Х*	Keine Änderung
0	0	ſ	1	1
0	0	Ŀ	0	0

X* = beliebiger Logikpegel

Parameter

Aktivierung Preset: Diese Funktion ermöglicht es, den Ausgang Q (unabhängig vom Signalzustand des Eingangs *D*) auf HIGH zu bringen.

Aktivierung Clear: Diese Funktion ermöglicht es, die Speicherung zurückzustellen. Ein HIGH auf *Clear* bewirkt immer ein LOW am Ausgang Q - unabhängig von den anderen Eingängen.

T FLIP FLOP (max. Anzahl = 16)

Dieser Funktionsbaustein schaltet den Ausgang Q an jeder steigenden Flanke des Eingangs T (Toggle) um.

Parameter

Aktivierung Clear: Diese Funktion ermöglicht es die Speicherung zurückzustellen. Ein HIGH auf CLEAR bewirkt immer ein LOW am Ausgang Q, unabhängig von den anderen Eingängen.

SR FLIP FLOP: Set-Reset-Flipflop

Der Funktionsbaustein SR FLIP FLOP hat 2 stabile Zustände (bistabil) des Ausgangs Q. HIGH auf dem Eingang Set bewirkt ein HIGH am Ausgang Q. Ein HIGH auf dem Eingang Reset bewirkt **immer** ein LOW am Ausgang Q (Vorrang). Bei LOW auf Set und Reset gleichzeitig bleibt der letzte Zustand am Ausgang Q bestehen (Speicherung).

SR FLIP FLOP	SR FLIP FLOP
--------------	--------------

SET	RESET	Q
0	0	Keine Änderung
0	1	0
1	0	1
1	1	0

USER RESTART MANUAL: Wiederanlaufsperre, Start mit steigender Flanke

Der Funktionsbaustein USER RESTART MANUAL dient als Wiederanlaufsperre. Der Ausgang der Sicherheitseinrichtung wird an den Eingang *In* gelegt, die Start-Taste wird an den flankengesteuerten Eingang *Restart* gelegt. Der Start (Ausgang Q auf HIGH) erfolgt mit steigender Flanke, gemäß der nachfolgenden Wahrheitstabelle.

Clear	Restart	In	Q
1	Х	Х	0
Х	Х	0	0
0	0	1	Keine Änderung
0	Ŀ	1	1
0	J.	1	Keine Änderung

Parameter

Aktivierung Clear: Diese Funktion ermöglicht es, die Speicherung zurückzustellen. Ein HIGH auf *Clear* bewirkt immer ein LOW am Ausgang *Q* - unabhängig von den anderen Eingängen.

USER RESTART MONITORED: Wiederanlaufsperre, Start mit fallender Flanke

Der Funktionsbaustein USER RESTART MONITORED dient als Wiederanlaufsperre. Der Ausgang der Sicherheitseinrichtung wird an den Eingang *In* gelegt, die Start-Taste wird an den flankengesteuerten Eingang *Restart* gelegt.

Der Start (Ausgang Q auf HIGH) erfolgt mit fallender Flanke, gemäß der nachfolgenden Wahrheitstabelle.

Clear	Restart	In	Q
1	Х	Х	0
Х	Х	0	0
0	0	1	Keine Änderung
0	ſ	1	Keine Änderung
0	<u> </u>	1	1

Parameter

Aktivierung Clear: Diese Funktion ermöglicht es, die Speicherung zurückzustellen. Ein HIGH auf *Clear* bewirkt immer ein LOW am Ausgang Q - unabhängig von den anderen Eingängen.

MACRO RESTART MANUAL (max. 16 Stück Restart-Funktionsbausteine)

Der Funktionsbaustein MACRO RESTART MANUAL ist die Kombination der Wiederanlaufsperre USER RESTART MANUAL mit einer wählbaren Eingangslogik. Der Start erfolgt entsprechend der unten stehenden Wahrheitstabelle.

Clear	Restart	D	Q
1	Х	Х	0
Х	Х	0	0
0	L	1	Erhält Speicher
0	Ŀ	1	1
0		1	Erhält Speicher

Parameter

Eingänge Logik: Ermöglicht das Auswählen der Anzahl der logischen Eingänge (2 bis 7)

Logik auswählen: Ermöglicht die Auswahl des Logiktyps: AND , NAND , OR , NOR , XOR , XNOR *Out aktivieren:* Ermöglicht die Ausgabe des Ergebnisses des Eingangsbausteins auf den Ausgang *LogicOut*.

Aktivierung Clear: Diese Funktion ermöglicht es, die Speicherung zurückzustellen. Ein HIGH auf Clear bewirkt immer ein LOW am Ausgang Q - unabhängig von den anderen Eingängen. Der Eingang Clear ist nur aktivierbar, wenn die Anzahl der Eingänge Logik nicht höher als 6 gewählt wurde.

MACRO RESTART MONITORED: (max. 16 Stück Restart-Funktionsbausteine)

Der Funktionsbaustein MACRO RESTART MONITORED ist die Kombination der Wiederanlaufsperre USER RESTART MONITORED mit einer wählbaren Eingangslogik. Der Start erfolgt entsprechend der unten stehenden Wahrheitstabelle.

Clear	Restart	D	Q
1	Х	Х	0
Х	Х	0	0
0	L	1	Erhält Speicher
0	ſ	1	Erhält Speicher
0	Л	1	1

Parameter

Eingänge Logik: Ermöglicht das Auswählen der Anzahl der logischen Eingänge (2 bis 7). *Logik auswählen:* Ermöglicht die Auswahl des Logiktyps: AND, NAND, OR, NOR, XOR, XNOR. *Out aktivieren:* Ermöglicht die Ausgabe des Ergebnisses des Eingangsbausteins auf den Ausgang *LogicOut*.

Aktivierung Clear: Diese Funktion ermöglicht es, die Speicherung zurückzustellen. Ein HIGH auf Clear bewirkt immer ein LOW am Ausgang Q - unabhängig von den anderen Eingängen. Der Eingang Clear ist nur aktivierbar, wenn die Anzahl der Eingänge Logik nicht höher als 6 gewählt wurde.

8.4.3 Zählerbausteine

Zählerbausteine erzeugen am Ausgang Q ein Impuls (HIGH), sobald die vorgewählte Anzahl an Impulsen (Wert im Feld *Zählung*) erreicht wird.

COUNTER: Zähler, auf- und abwärts

Der Funktionsbaustein COUNTER ist ein Impulszähler.

Zählertyp: Es gibt 3 Zähler-Typen (Betriebsarten): Es gibt 3 Betriebsarten:

1. Automatisch

(Standardmodus, dieser Typ wird direkt gesetzt, wenn die Option *Aktivierung Clear* <u>nicht</u> angewählt ist).

- 2. Manuell
- (Aktivierung Clear angewählt)
 3. Manuell/Automatisch (Aktivierung Clear angewählt)

Hinweis

Der Zählerwert (Feld Zählung) für alle nachfolgenden Beispiele beträgt 6.

Betriebsart "Automatisch"

Die Impulse am Eingang *Ck up* werden hoch gezählt (mit *Ck down* kann heruntergezählt werden). Sobald der vorgewählte Wert (Feld *Zählung*) erreicht ist, erscheint am Ausgang *Q* ein Impuls, dessen Länge (Dauer) der des letzten *Ck up*-Impulses entspricht.

Der Zähler kann zwischen den Impulsen nicht auf 0 gesetzt werden (*Clear* nicht verfügbar). Nach dem erfolgten Ausgangsimpuls fängt der Zähler wieder von vorne an zu zählen, bis der vorgewählte Wert erneut erreicht wird (siehe nachfolgendes Impulsdiagramm).

Betriebsart "Manuell"

Die Zählung erfolgt (wie zuvor beschrieben) durch Addieren der Impulse an *Ck up* und Subtrahieren an *Ck down* (falls Eingang *Ck down* aktiviert). Sobald der vorgewählte Wert (Feld *Zählung*) erreicht ist, geht der Ausgang *Q* (statisch) auf (HIGH).

Mit einerm (HIGH)-Pegel am Eingang *Clear* kann der Ausgang Q wieder auf (LOW) gebracht werden (falls Eingang *Clear* aktiviert).

Betriebsart "Manuell/Automatisch"

Die Zählung erfolgt prinzipiell wie im Modus *Automatisch* (unter 1. beschrieben), allerdings mit dem Unterschied, dass der Zählerstand mittels einem (HIGH) auf dem Eingang *Clear* auf 0 gebracht werden kann (Rücksetzung).

Parameter

Ck up: Aufwärtszählen (zum Zählerstand addieren) mit steigender Flanke.

Ck down: Abwärtszählen (vom Zählerstand subtrahieren) mit steigender Flanke.

Doppelte Flanke: Die Zählung erfolgt sowohl mit steigender, als auch mit fallender Flanke.

Aktivierung Clear: Der Zählerstand kann mittels einem HIGH auf dem Eingang *Clear* auf 0 gebracht werden (Rücksetzung). Der Ausgang Q geht auf LOW.

Zählertyp: Wenn Clear <u>nicht</u> aktiviert ist, wird der Zählertyp auf Automatisch gesetzt. Wenn Clear aktiviert ist, kann zwischen Manuell/Automatisch und Automatisch ausgewählt werden.

Zählung: In dieses Feld den zu erreichenden Zählwert eintragen (max. 16383).

8.4.4 TIMER-Operatoren

Die Timerbausteine erzeugen ein Signal (HIGH oder LOW) für einen bestimmten Zeitraum.

CLOCKING: Taktgenerator, steuerbar

Der Funktionsbaustein CLOCKING liefert am Ausgang *Out* ein Taktsignal mit wählbarem Tastverhältnis (ti/tp), solange am Eingang *En* (Enable) ein HIGH-Signal anliegt.

Das Tastverhältnis kann über 7 Eingänge $In \times \%$ im Bereich 10...90% in 10%-Schritten gewählt werden (Duty cycle-Wahl, siehe Wahrheitstabelle *Tab. 8-4*).

Liegt an keinem der Eingänge $In \times \%$ ein HIGH an, wird das Tastverhältnis automatisch auf 50% (ti = tp) gesetzt. Der im Feld *Zeit* eingestellte Wert (von 10 ms bis 1093 s) entspricht der Periodenlänge T.

DUTY CYCLE-WAHL									
EN	10%	20%	30%	40%	60%	70%	80%	OUT	
1	0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	50%	
1	1	0	0	0	0	0	0	10%	
1	0	1	0	0	0	0	0	20%	
1	0	0	1	0	0	0		30%	
1	0	0	0	1	0	0	0	40%	
1	0	0	0	0	1	0	0	60%	
1	0	0	0	0	0	1	0	70%	
1	0	0	0	0	0	0	1	80%	
1	1	0	0	0	0	0	1	90%	

Tab. 8-4 TIMER OPERATOREN Duty Cycle-Wahl

Hinweis

- Der Enable-Eingang *En* muss immer auf HIGH liegen.
- Es darf (mit Ausnahme Paar 10% und 80%) immer nur ein Eingang *In x*% gleichzeitig aktiv sein.
- Liegt an keinem der Eingänge *In x*% ein HIGH-Signal an, wird das Tastverhältnis automatisch auf 50% gesetzt.
- Die Zeitwerteingabe (im Feld Zeit) muss immer mit der Return-Taste bestätigt werden!

FN

MONOSTABLE: Monoflop mit Mindestzeit-Pegel

Modus Steigende Flanke: Mindestzeit-HIGH-Pegel

Der Funktionsbaustein MONOSTABLE liefert am Ausgang *Out* ein HIGH, das <u>mindestens</u> dem im Feld *Zeit* eingestellten Zeitraum (10 ms bis 1093 s) entspricht. Gestartet wird das HIGH-Signal am Ausgang mit einer steigenden Flanke (Option *Steigende Flanke* ausgewählt), oder mit einer fallenden Flanke (Option *Steigende Flanke* <u>nicht</u> ausgewählt).

Ist HIGH am Eingang länger als der eingestellte Zeitwert, bleibt der Ausgang *Out* so lange auf HIGH, wie HIGH am Eingang anliegt.

Retriggerable: Wird diese Option ausgewählt, kann die Zeit (innerhalb des Zeitablaufes) mit einer steigenden Flanke auf *In* von Neuem gestartet werden (Start wieder bei 0s).

Modus Fallende Flanke: Mindestzeit-LOW-Pegel:

Wird die Option Steigende Flanke nicht ausgewählt, ergibt sich eine Logik mit einem LOW am Ausgang Out, das <u>mindestens</u> dem im Feld Zeit eingestellten Zeitraum (10 ms bis 1093 s) entspricht. Gestartet wird das LOW mit einer fallenden Flanke (HIGH \rightarrow LOW) am Eingang *In*. Ist LOW am Eingang *In* länger als der eingestellte Zeitwert, bleibt der Ausgang Out so lange auf LOW, wie LOW am Eingang anliegt.

Retriggerable: Wird diese Option ausgewählt, kann die Zeit (innerhalb des Zeitablaufes) mit einer steigenden Flanke auf *In* von Neuem gestartet werden (Start wieder bei 0 s).

Modus: Fallende Flanke, nicht retriggerbar

MONOSTABLE_B: Monoflop klassisch (Ausgang ohne Zeitverlängerung)

Modus Steigende Flanke: Feste HIGH-Pegel-Zeit

Der Funktionsbaustein MONOSTABLE_B liefert am Ausgang *Out* ein HIGH, das fest dem im Feld *Zeit* eingestellten Zeitraum (10 ms bis 1093 s) entspricht, unabhängig von der Dauer des Signals am Eingang *In*. Gestartet wird das HIGH-Signal am Ausgang mit einer steigenden Flanke (Option *Steigende Flanke* ausgewählt) am Eingang *In*.

Hinweis

Im Gegensatz zum Funktionsbaustein MONOSTABIL ist der Ausgang von MONOSTABIL_B (unabhängig vom Eingang *In*) immer solange HIGH, wie der eingestellte Sekunden-Wert im Feld *Zeit*.

Retriggerable: Wird diese Option ausgewählt, kann die Zeit (innerhalb des Zeitablaufes) mit einer steigenden Flanke auf *In* von Neuem gestartet werden (Start wieder bei 0s).

Fig. 8-32 MONOSTABLE_B: Steigende Flanke

Modus Fallende Flanke: Feste LOW-Pegel-Zeit

Wird die Option *Steigende Flanke* nicht ausgewählt, liefert der Funktionsbaustein am Ausgang *Out* ein LOW, das fest dem im Feld *Zeit* eingestellten Zeitraum (10 ms bis 1093 s) entspricht, unabhängig von der Dauer des Signals am Eingang *In*.

 MONOSTABLE_B

 Jin

 0,01 s

 Out

 Retriggerable

 Stelgende Flanke

Gestartet wird das LOW-Signal am Ausgang mit einer fallenden Flanke am Eingang *In*.

Retriggerable: Wird diese Option ausgewählt, kann die Zeit (innerhalb des Zeitablaufes) mit einer steigenden Flanke auf *In* von Neuem gestartet werden (Start wieder bei 0s.)

Fig. 8-33 MONOSTABLE_B: Fallende Flanke

PASSING MAKE CONTACT: Maximalzeit (Impulszeit-Begrenzer)

Beim Funktionsbaustein PASSING MAKE CONTACT folgt der Ausgang *Out* dem auf dem Eingang *In* anliegenden Signal (siehe nebenstehende Grafik). Bleibt dieses jedoch länger als zeitlich vorgegeben (Wert in Feld Zeit) auf HIGH, begibt sich der Ausgang *Out* auf LOW. Das Ausgangssignal wird dadurch zeitlich begrenzt (siehe nebenstehende Grafik).

Parameter

Zeit: Die maximale Zeit T kann von 10 ms bis 1093 s eingegeben werden (mit Return bestätigen).

Retriggerable: Wird diese Option aktiviert, kann innerhalb der eingestellten Zeit erneut ein Zeitablauf mit einer steigenden Flanke (LOW→HIGH) am Eingang *In* ausgelöst (nachgetriggert) werden. Das Ausgangssignal verlängert sich dadurch (siehe Grafik).

DELAY: Ein-/Ausschaltverzögerung mit Kompensation Signalunterbrechung

Mit dem Funktionsbaustein DELAY kann ein HIGH-Pegel am Eingang *In* zeitlich verzögert (gemäß dem im Feld *Zeit* eingestellten Zeitwert) auf den Ausgang *Out* gebracht werden.

Parameter

Zeit: Die maximale Zeit T kann von **10 ms** bis **1093 s** eingegeben werden (mit Return bestätigen).

Modus Steigende Flanke: Einschaltverzögerung

Zu Beginn des HIGH-Pegels am Eingang In ist der Ausgang Out zunächst noch LOW.

Die Verzögerung beginnt mit der steigenden Flanke des Signals am Eingang *In*. Nach Ablauf der eingestellten Zeit *T* geht der Ausgang *Out* auf HIGH, wenn der Eingang *In* sich zu diesem Zeitpunkt ebenfalls auf HIGH befindet und bleibt HIGH, solange auch der Eingang *In* HIGH ist.

Eine zwischenzeitliche Unterbrechung des Eingangssignals (*In* auf LOW) hat dabei keine Auswirkungen auf die Funktion.

Sollte dies nicht gewünscht sein, muss die Option *Retriggerable* angewählt werden. Dann beginnt der Zeitablauf mit jeder steigenden Flanke erneut; das Eingangssignal *In* muss bis zum Ablauf von T auf HIGH bleiben, sonst erfolgt kein HIGH am Ausgang *Out*.

Ist nach Ablauf von *T* der Eingang *In* LOW, bleibt auch der Ausgang *Out* LOW.

Modus: *Steigende Flanke*, nicht retriggerbar

Modus Fallende Flanke: Ausschaltverzögerung

Mit der steigenden Flanke am Eingang *In* geht auch der Ausgang *Out* sofort auf HIGH.

Die Verzögerung beginnt mit der fallenden Flanke des Signals am Eingang *In*. Nach Ablauf der eingestellten Zeit T geht der Ausgang *Out* auf LOW, wenn der Eingang *In* sich zu diesem Zeitpunkt ebenfalls auf LOW befindet und bleibt LOW, solange auch der Eingang *In* LOW ist.

Eine zwischenzeitliches HIGH am Eingang *In* hat dabei keine Auswirkungen auf die Funktion. Sollte dies nicht gewünscht sein, muss die Option *Retriggerable* angewählt werden. Dann beginnt der Zeitablauf mit jeder fallenden Flanke erneut; das Eingangssignal *In* muss bis zum Ablauf von *T* auf LOW bleiben, sonst erfolgt kein LOW am Ausgang *Out*.

Ist nach Ablauf von *T* der Eingang *In* HIGH, bleibt auch der Ausgang *Out* HIGH.

DELAY LINE: Ausschaltverzögerung klassisch

Beim Funktionsbaustein DELAY LINE handelt es sich um eine klassische Ausschaltverzögerung. Nach dem Ende eines HIGH-Signals am Eingang *In* bleibt der Ausgang *Out* noch um die eingestellte Zeit auf HIGH. Kehrt der Eingang *In* während der eingestellten Verzögerungszeit auf HIGH zurück, erscheint am Ausgang *Out* in jedem Fall ein kurzer LOW-Impuls, mit einer Dauer von ca. der doppelten Reaktionszeit des eloProg-Systems (siehe Hinweise).

Parameter

Zeit: Die maximale Zeit t kann von 10ms bis 1098 s eingegeben werden (mit Return bestätigen).

Hinweis

- Im Gegensatz zum Timer-Funktionsbaustein DELAY kompensiert der Timer-Funktionsbaustein DELAY LINE eventuelle Signalunterbrechungen am Eingang *In* während des Zeitablaufes nicht.
- Dieser Funktionsbaustein eignet sich für verzögerte OSSD-Ausgänge, unter der Voraussetzung, dass ein manueller Reset (manuelle Wiedereinschaltsperre) konfiguriert ist.
- Die Reaktionszeit des eloProg-Systems (relevant bei Wiederkehr des Eingangssignals während des Ablaufs der Verzögerungszeit) ist abhängig von der Anzahl der angeschlossenen Module (Slaves) und weiteren Parametern, siehe Kap. 7 TECHNISCHE DATEN auf Seite 7-1.

8.4.5 Muting

Die Muting-Funktion ermöglicht ein vorübergehendes Unterdrücken (Muten) der Sicherheitsfunktion einer BWS (berührungslos wirkenden Schutzeinrichtung), um ein Abschalten der Sicherheitsausgänge während eines Materialtransportes durch das Schutzfeld der BWS, zu verhindern. Den Transport des Fördergutes durch die sensorgesteuerte Schutzeinrichtung (z.B. Sicherheitslichtvorhang) registrieren die an der Sicherheitsauswerteeinheit (SAE) angeschlossenen Muting-Sensoren, die eine Unterscheidung zwischen Mensch und Material ermöglichen. Den sicheren Ablauf überwacht ein geeigneter Muting-Funktionsbaustein in der SAE (z.B. eloProg). Die Muting-Sensorsignale (und ggf. weitere, dazuwählbare Parameter) müssen in der zulässigen Form und Reihenfolge vorliegen (abhängig vom Muting-Funktionsbaustein und der jeweiligen Konfiguration), damit der Muting-Vorgang eingeleitet wird. Weitere Anforderungen an die Auswahl und Anbringung der BWS und den zugehörigen Muting-Sensoren sind den Herstellerangaben zu entnehmen.

8.4.6 MUTING-Funktionsbausteine

MUTING "Con" (Concurrent): 4-Sensor-Muting (doppelt-parallel)

Die Aktivierung der Muting-Funktion erfolgt im Anschluss an die gleichzeitige Bedämpfung der Sensoren S1&S2 (bzw. S3&S4 bei Materialfluss in Gegenrichtung).

Der erlaubte Zeitversatz zwischen den Sensorsignalen S1&S2, bzw. S3&S4 kann zwischen 2 s und 5 s gewählt werden (Option Sensor-Zeit).

Der Funktionsbaustein MUTING "Con" überwacht eine Muting-Funktion, mit Muting-Sensoren in doppelt-paralleler (auch gekreuzter) Ausführung. Das Muting kann aufgrund der Sensoranordnung in beide Richtungen gestartet werden. Die Signale der Muting-Sensoren (jeweils 2 am Ein- und Auslauf) müssen dabei gleichzeitig erscheinen. Weitere Muting-Bedingungen lassen sich dazuwählen.

Hinweis Mutina-S

Muting-Startbedingung: Der Muting-Zyklus kann nur eingeleitet werden, wenn sich vor Beginn alle Sensoren auf LOW befinden und der Eingang *Input* auf HIGH liegt (Sicherheitslichtvorhang frei).

Parameter

Timeout (Muting-Abbruch nach Zeitablauf): Werte von 10 s.....

Innerhalb der gewählten Zeit (Schieberegler) muss der Muting-Zyklus beendet werden. Ist beim Ablauf der eingestellten Zeit der Muting-Zyklus noch nicht abgeschlossen, wird das Muting umgehend abgebrochen. Der Ausgang *Output* geht auf LOW, falls zum Zeitpunkt des Timeout die BWS bereits unterbrochen war (*Input* LOW), andernfalls bleibt der Ausgang *Output* auf HIGH.

Mit Enable (Freigabe): Bei Aktivierung der Option *Mit Enable* kann die Muting-Funktion über den flankengesteuerten Eingang *Enable* kontrolliert werden (siehe nächster *Abschnitt Freigabe-Typ*).

Freigabe-Typ (nur aktiv, wenn Mit Enable angewählt wurde):

Es werden 2 Typen von Enable unterschieden: Nur Freigabe und Aktivierung/Deaktivierung

Nur Freigabe: Vor Muting-Beginn muss am Eingang *Enable* ein Signalwechsel von LOW auf HIGH (steigende Flanke) erfolgen, andernfalls lässt sich die Muting-Funktion nicht starten. Ist Muting gestartet, lässt sich der Muting-Ablauf am Eingang *Enable* nicht mehr beeinflussen.

Aktivierung/Deaktivierung: Prinzipiell gleiche Wirkungsweise, wie bei der Option *Nur Freigabe*, allerdings mit dem Unterschied, dass der Muting-Ablauf sofort abgebrochen wird, wenn das Signal am Eingang *Enable* wieder auf LOW geht (fallende Flanke).

Mit Muting Out (Signalausgang): Ausgang ist HIGH während des Muting-Ablaufes.

Richtung (Materialtransportrichtung): Mögliche Werte: Auf, Ab, BIDIR

Bei doppelt parallelem Muting besteht die Möglichkeit, den Muting-Vorgang von beiden Seiten der BWS einzuleiten. Die zulässige Reihenfolge der Betätigung der Sensoren kann mit der Option *Richtung* definiert werden. Wenn *BIDIR* eingestellt ist (Bidirektional), kann die Betätigung sowohl von S1&S2 nach S3&S4 als auch von S3&S4 nach S1&S2 erfolgen. Von S1&S2 nach S3&S4 gelangt man mit *Auf*, in die entgegengesetzte Richtung mit *Ab*.

Schließen von Muting: Mögliche Werte: CURTAIN (Lichtvorhang), SENSOR.

Dieser Parameter definiert, ab wann der Muting-Vorgang beendet wird. Bei Auswahl *CURTAIN* erfolgt das Muting-Ende sofort mit Freiwerden der BWS (steigende Flanke am Eingang *Input* des Muting-Funktionsbausteins); bei Auswahl *SENSOR* erst nach Freiwerden des vorletzten Sensors.

]	Muting	S4	S3	BWS (Input)	S2	S1
1	0	0	0	1	0	0
1	0	0	0	1	0	1
	1	0	0	1	1	1
Muting aktiv	1	0	0	x	1	1
	1	1	1	X	1	1
]	1	1	1	0	0	0
BWS hat	0	1	1	1	0	0
beendet	0	0	0	1	0	0

Auswahl von CURTAIN

Auswahl von SENSOR

S1	S2	BWS (Input)	S3	S4	Muting	
0	0	1	0	0	0	
1	0	1	0	0	0	
1	1	1	0	0	1	
1	1	x	0	0	1	
1	1	x	1	1	1	Muting aktiv
0	0	0	1	1	1	
0	0	1	1	1	1	
0	0	1	0	1	0	S3 hat
0	0	1	0	0	0	beendet

Blind Time (nur aktiv, wenn bei Schließen von Muting die Auswahl Curtain getroffen wurde):

Mögliche Werte: 250 ms, 500 ms, 750 ms, 1 s. Nach dem kompletten Durchgang des Fördergutes (z.B. Paletten) wird der Muting-Zyklus durch Freiwerden des Lichtvorhanges (Curtain) beendet und die Ausgänge der BWS gehen wieder auf HIGH. Es könnten aber evtl. hervorstehende Gegenstände den Lichtvorhang noch zum Abschalten bringen. Während der *Blind Time* wird der Eingang *Input* am Muting-Funktionsbaustein auf HIGH gehalten.

Warnung

Der erforderliche Sicherheitsabstand der BWS zur Gefahrenstelle kann sich aufgrund der längeren Reaktionszeit (Abschaltzeit) vergrößern!

Sensor-Zeit: Mögliche Werte 2 s...5 s.

Definiert den erlaubten Zeitversatz zwischen den Sensoren S1&S2, bzw. S3&S4.

MUTING "L" (L-Anordnung): 2-Sensor-Einseiten-Muting (parallel)

Die Aktivierung der Muting-Funktion erfolgt im Anschluss an die gleichzeitige Bedämpfung der Sensoren S1&S2. Muting-Ende ist sofort nach Freiwerden der BWS (Sicherheitslichtvorhang). Der erlaubte Zeitversatz zwischen den Sensorsignalen S1&S2 bzw. S3&S4 kann zwischen 2 s und 5 s gewählt werden (Option Sensor-Zeit).

Der Funktionsbaustein MUTING "L" überwacht eine Muting-Funktion, mit Muting-Sensoren in einseitig-paralleler (auch gekreuzter) Ausführung. Das Muting kann aufgrund der Sensoranordnung nur in eine Richtung gestartet werden. Diese Muting-Form ist daher nur für Einoder Auslaufstrecken sinnvoll, nicht für bidirektionale Transportstrecken geeignet. Die Signale der Muting-Sensoren S1&S2 müssen gleichzeitig erscheinen.

Weitere Muting-Bedingungen lassen sich dazuwählen.

Hinweis

Muting-Startbedingung: Der Muting-Zyklus kann nur eingeleitet werden, wenn sich vor Beginn alle Sensoren auf LOW befinden und der Eingang *Input* auf HIGH liegt (Sicherheitslichtvorhang frei).

Parameter

Timeout (Muting-Abbruch nach Zeitablauf): Werte von 10 s...∞

Innerhalb der gewählten Zeit (Schieberegler) muss der Muting-Zyklus beendet werden. Ist beim Ablauf der eingestellten Zeit der Muting-Zyklus noch nicht abgeschlossen, wird das Muting umgehend abgebrochen. Der Ausgang *Output* geht auf LOW, falls zum Zeitpunkt des Timeout die BWS bereits unterbrochen war (*Input* LOW), andernfalls bleibt der Ausgang *Output* auf HIGH.

Mit Enable (Freigabe): Bei Aktivierung der Option *Mit Enable* kann die Muting-Funktion über den flankengesteuerten Eingang *Enable* kontrolliert werden (siehe nächster *Abschnitt Freigabe-Typ*).

Freigabe-Typ (nur aktiv, wenn Mit Enable angewählt wurde):

Es werden 2 Typen von Enable unterschieden: Nur Freigabe und Aktivierung/Deaktivierung

Nur Freigabe: Vor Muting-Beginn muss am Eingang *Enable* ein Signalwechsel von LOW auf HIGH (steigende Flanke) erfolgen, andernfalls lässt sich die Muting-Funktion nicht starten. Ist Muting gestartet, lässt sich der Muting-Ablauf am Eingang *Enable* nicht mehr beeinflussen.

Aktivierung/Deaktivierung: Prinzipiell gleiche Wirkungsweise, wie bei der Option *Nur Freigabe*, allerdings mit dem Unterschied, dass der Muting-Ablauf sofort abgebrochen wird, wenn das Signal am Eingang *Enable* wieder auf LOW geht (fallende Flanke).

Mit Muting Out (Signalausgang): Ausgang ist HIGH während des Muting-Ablaufes.

Sensor-Zeit: Mögliche Werte 2 s...5 s

Definiert den erlaubten Zeitversatz zwischen den Sensoren S1&S2.

Zeit bis Muting-Ende (Muting Gültigkeitsdauer): Mögliche Werte: 2,5 s...6 s, in 0,5 s-Schritten. Erlaubt die Eingabe einer "Verfallszeit" des Mutings nach der Freigabe des ersten Sensors.

Blind Time: Mögliche Werte: 250 ms, 500 ms, 750 ms, 1 s.

Nach dem kompletten Durchgang des Fördergutes (z.B. Paletten) wird der Muting-Zyklus durch Freiwerden des Lichtvorhanges (Curtain) beendet und die Ausgänge der BWS gehen wieder auf HIGH. Es könnten aber evtl. hervorstehende Gegenstände den Lichtvorhang noch zum Abschalten bringen. Während der *Blind Time* wird der Eingang *Input* am Muting-Funktionsbaustein auf HIGH gehalten.

Warnung

Der erforderliche Sicherheitsabstand der BWS zur Gefahrenstelle kann sich aufgrund der längeren Reaktionszeit (Abschaltzeit) vergrößern!

MUTING "Seq" (Sequential): 4-Sensor-Muting (seriell)

Die Aktivierung der Muting-Funktion erfolgt im Anschluss an die serielle Bedämpfung der Sensoren S1, S2 und anschließend S3, S4. Bei Materialfluss in die Gegenrichtung läuft die Sequenz in umgekehrter Reihenfolge ab.

Der Funktionsbaustein MUTING "Seq" überwacht eine Muting-Funktion, mit Muting-Sensoren in serieller (sequenzieller) Ausführung. Das Muting kann aufgrund der Sensoranordnung in beide Richtungen gestartet werden. Diese Muting-Form ist daher für Ein- <u>und</u> Auslaufstrecken geeignet. Die Signale der Muting-Sensoren S1, S2, S3, S4 müssen in der zulässigen Reihenfolge erscheinen. Weitere Muting-Bedingungen lassen sich dazuwählen.

Hinweis

Muting-Startbedingung: Der Muting-Zyklus kann nur eingeleitet werden, wenn sich vor Beginn alle Sensoren auf LOW befinden und der Eingang *Input* auf HIGH liegt (Sicherheitslichtvorhang frei).

Parameter

Timeout (Muting-Abbruch nach Zeitablauf): Werte von 10 s...∞

Innerhalb der gewählten Zeit (Schieberegler) muss der Muting-Zyklus beendet werden. Ist beim Ablauf der eingestellten Zeit der Muting-Zyklus noch nicht abgeschlossen, wird das Muting umgehend abgebrochen. Der Ausgang *Output* geht auf LOW, falls zum Zeitpunkt des Timeout die BWS bereits unterbrochen war (*Input* LOW), andernfalls bleibt der Ausgang *Output* auf HIGH.

Mit Enable (Freigabe): Bei Aktivierung der Option *Mit Enable* kann die Muting-Funktion über den flankengesteuerten Eingang *Enable* kontrolliert werden (siehe nächster *Abschnitt Freigabe-Typ*).

Freigabe-Typ (nur aktiv, wenn Mit Enable angewählt wurde):

Es werden 2 Typen von Enable unterschieden: Nur Freigabe und Aktivierung/Deaktivierung

Nur Freigabe: Vor Muting-Beginn muss am Eingang *Enable* ein Signalwechsel von LOW auf HIGH (steigende Flanke) erfolgen, andernfalls lässt sich die Muting-Funktion nicht starten. Ist Muting gestartet, lässt sich der Muting-Ablauf am Eingang *Enable* nicht mehr beeinflussen.

Aktivierung/Deaktivierung: Prinzipiell gleiche Wirkungsweise, wie bei der Option *Nur Freigabe*, allerdings mit dem Unterschied, dass der Muting-Ablauf sofort abgebrochen wird, wenn das Signal am Eingang *Enable* wieder auf LOW geht (fallende Flanke).

Mit Muting Out (Signalausgang): Ausgang ist HIGH während des Muting-Ablaufes.

Richtung (Materialtransportrichtung): Mögliche Werte: Auf, Ab, BIDIR

Bei seriellem (sequenziellem) Muting besteht die Möglichkeit, den Muting-Vorgang von beiden Seiten der BWS einzuleiten. Die zulässige Reihenfolge der Betätigung der Sensoren kann mit der Option *Richtung* definiert werden. Wenn *BIDIR* eingestellt ist (Bidirektional), kann die Betätigung sowohl von S1 nach S4, als auch von S4 nach S1 erfolgen. Nur S1 nach S4 kann mit *Auf*, nur S4 nach S1 mit *Ab* festgelegt werden.

Schließen von Muting: Mögliche Werte: CURTAIN (Lichtvorhang), SENSOR.

Dieser Parameter definiert, ab wann der Muting-Vorgang beendet wird. Bei Auswahl *CURTAIN* erfolgt das Mutinge-Ende sofort mit Freiwerden der BWS (steigende Flanke am Eingang *Input* des Muting-Funktionsbausteins); bei Auswahl *SENSOR* erst nach Freiwerden des vorletzten Sensors.

S1	S2	Input	S3	S4	Muting	
0	0	1	0	0	0	
1	0	1	0	0	0	
1	1	1	0	0	1	
1	1	x	0	0	1	
1	1	x	1	0	1	Muting oktiv
1	1	X	1	1	1	wuting aktiv
0	1	X	1	1	1	
0	0	0	1	1	1	
0	0	1	1	1	0	BWS hat
0	0	1	0	1	0	beendet
0	0	1	0	0	0	

Auswahl von CURTAIN

S1 S2 Input S3 S4 Muting Х Х Х Muting aktiv х S3 hat beendet

Auswahl von SENSOR

Blind Time (nur aktiv, wenn bei Schließen von Muting die Auswahl Curtain getroffen wurde):

Mögliche Werte: 250 ms, 500 ms, 750 ms, 1 s. Nach dem kompletten Durchgang des Fördergutes (z.B. Paletten) wird der Muting-Zyklus durch Freiwerden des Lichtvorhanges (Curtain) beendet und die Ausgänge der BWS gehen wieder auf HIGH. Es könnten aber evtl. hervorstehende Gegenstände den Lichtvorhang noch zum Abschalten bringen. Während der *Blind Time* wird der Eingang *Input* am Muting-Funktionsbaustein auf HIGH gehalten.

Warnung

Der erforderliche Sicherheitsabstand der BWS zur Gefahrenstelle kann sich aufgrund der längeren Reaktionszeit (Abschaltzeit) vergrößern!

MUTING "T" (T-Anordnung): 2-Sensor-Zweiseiten-Muting (parallel)

Die Aktivierung der Muting-Funktion erfolgt im Anschluss an die gleichzeitige Bedämpfung der Sensoren S1&S2.

Der erlaubte Zeitversatz zwischen den Sensorsignalen S1&S2, kann zwischen 2 s und 5 s gewählt werden (Option Sensor-Zeit).

Der Funktionsbaustein MUTING "T" überwacht eine Muting-Funktion, mit optischen Muting-Sensoren in gekreuzter Ausführung. Aufgrund der besonderen Sensoranordnung werden S1&S2 von beiden Seiten jeweils gleichzeitig bedämpft. Diese Muting-Form ist daher für Ein- <u>und</u> Auslaufstrecken geeignet; allerdings kann die Richtung nicht unterschieden werden. Eine Richtungserkennung und Einschränkung nur auf eine Transportrichtung ist daher nicht möglich.

Weitere Muting-Bedingungen lassen sich dazuwählen.

Hinweis

Muting-Startbedingung: Der Muting-Zyklus kann nur eingeleitet werden, wenn sich vor Beginn alle Sensoren auf LOW befinden und der Eingang *Input* auf HIGH liegt (Sicherheitslichtvorhang frei).

Parameter

Timeout (Muting-Abbruch nach Zeitablauf): Werte von 10 s...∞

Innerhalb der gewählten Zeit (Schieberegler) muss der Muting-Zyklus beendet werden. Ist beim Ablauf der eingestellten Zeit der Muting-Zyklus noch nicht abgeschlossen, wird das Muting umgehend abgebrochen. Der Ausgang *Output* geht auf LOW, falls zum Zeitpunkt des Timeout die BWS bereits unterbrochen war (*Input* LOW), andernfalls bleibt der Ausgang *Output* auf HIGH.

Mit Enable (Freigabe): Bei Aktivierung der Option *Mit Enable* kann die Muting-Funktion über den flankengesteuerten Eingang *Enable* kontrolliert werden (siehe nächster *Abschnitt Freigabe-Typ*).

Freigabe-Typ (nur aktiv, wenn Mit Enable angewählt wurde):

Es werden 2 Typen von Enable unterschieden: Nur Freigabe und Aktivierung/Deaktivierung

Nur Freigabe: Vor Muting-Beginn muss am Eingang *Enable* ein Signalwechsel von LOW auf HIGH (steigende Flanke) erfolgen, andernfalls lässt sich die Muting-Funktion nicht starten. Ist Muting gestartet, lässt sich der Muting-Ablauf am Eingang *Enable* nicht mehr beeinflussen.

Aktivierung/Deaktivierung: Prinzipiell gleiche Wirkungsweise, wie bei der Option *Nur Freigabe*, allerdings mit dem Unterschied, dass der Muting-Ablauf sofort abgebrochen wird, wenn das Signal am Eingang *Enable* wieder auf LOW geht (fallende Flanke).

Mit Muting Out (Signalausgang): Ausgang ist HIGH während des Muting-Ablaufes.

Sensor-Zeit: Mögliche Werte 2 s...5 s.

Definiert den erlaubten Zeitversatz zwischen den Sensoren S1&S2.

MUTING OVERRIDE

Ereignet sich während des Muting-Vorganges ein Fehler, kann mit der Override-Funktion das im Durchgang (Muting-Bereich) verbliebene Transportgut herausgefördert werden. Der Ausgang Output wird während des Override-Vorganges auf HIGH gehalten.

Der Eingang *Input* des Funktionsbausteins MUTING OVERRIDE wird an den Ausgang *Output* eines Muting-Funktionsbausteins MUTING "X" angeschlossen und ermöglicht dann die manuelle Überbrückung des Eingangs *Input* (wenn *Input* auf LOW-Pegel) durch eine steigende Flanke am Eingang *Override*.

Wenn der Override-Vorgang nicht abläuft (Eingang Override LOW), folgt der Ausgang Output dem Eingang Input.

Die Override-Funktion kann mit oder ohne Halte-Funktion des Eingangs Override (Tastersignal) konfiguriert werden (siehe Abschnitt Mode Override (Taster-Konfiguration): auf Seite 8-97).

Override-Start-Bedingung:

Override kann nur aktiviert werden, wenn Muting nicht aktiv ist (*Input* LOW) und mindestens ein Muting-Sensor bedämpft oder die BWS belegt ist.

Bei Freiwerden von BWS (*Input* wieder HIGH) und Muting-Sensoren (Sensorsignale LOW) endet der *Override*-Vorgang und der Ausgang *Output* folgt wieder dem Eingang *Input*.

Hinweis

Der Bediener muss während der Override-Phase zusätzliche Schutzmaßnahmen einplanen!

Parameter

Manueller Reset: Ist diese Funktion ausgewählt, wird die Wiederanlaufsperre im Anschluss an jede Aktivierung des Funktionsbausteins aktiviert. Andernfalls folgt die Aktivierung des Ausgangs *Output* direkt dem Zustand des Eingangs *Input*.

Reset-Typ: Es gibt 2 Arten von Reset: *Manuell* und *Überwacht*. Wird die Option *Manuell* gewählt, wird nur der Übergang des Signals von 0 auf 1 überprüft. Im Fall von *Überwacht* wird der doppelte Übergang von 0 auf 1 und dann zurück auf 0 überprüft.

Mit belegten Sensoren:

Für die Muting-Funktionsbausteine "Con", "Seq" und "T" <u>muss</u> diese Option angewählt werden, für den Muting-Funktionsbaustein "L" darf die Option <u>nicht</u> angewählt werden. Andernfalls erfolgt bei der Validierung und beim Bericht eine Warnung.

Timeout (Override-Abbruch nach Zeitablauf): Werte von 10s.....

Innerhalb der gewählten Zeit (Schieberegler) muss der Override-Zyklus beendet werden. Ist beim Ablauf der eingestellten Zeit der Override-Zyklus noch nicht abgeschlossen, wird Override umgehend abgebrochen. Der Ausgang *Output* folgt wieder Eingang *Input*, unabhängig vom Signal am Eingang *Override*.

Mode Override (Taster-Konfiguration):

Mögliche Auswahlen: Taste drücken und Aufheben mit Rückstelltaste

Taste drücken: Der Override-Vorgang wird mit einer steigender Flanke am Eingang Override gestartet (Override-Start-Bedingung beachten, siehe Kap. MUTING OVERRIDE auf Seite 8-96, Erklärung am Abschnittsbeginn), der Ausgang Output geht auf HIGH und bleibt auch nach Loslassen der Override-Taste (Eingang Override LOW) auf HIGH. Override endet erst wieder, wenn die Start-Bedingung erlischt.

Aufheben mit Rückstelltaste: Der Override-Vorgang wird mit einer steigender Flanke am Eingang *Override* gestartet (Override-Start-Bedingung beachten, siehe Erklärung am Abschnittsbeginn), der Ausgang *Output* geht auf HIGH. Beim Loslassen der Override-Taste (Eingang *Override* mit fallender Flanke), oder wenn die Start-Bedingung erlischt, endet der Override-Zyklus wieder.

Mit OverOut (Meldeausgang): Während des Override-Zyklus ist OverOut auf HIGH.

Mit Request (Meldeausgang): Wenn die Override-Start-Bedingung gegeben ist (siehe *Kap. MUTING OVERRIDE auf Seite 8-96*, Erklärung am Abschnittsbeginn) geht der Ausgang *Mit Request* auf HIGH, um einen Override-Prozess anzufordern, bzw. als aktivierbar zu melden.

Da der Ausgang *Mit Request* immer dann auf HIGH geht, wenn sich im Muting-Ablauf ein Fehler ereignet, kann dieser Ausgang auch als Muting-Fehlermeldung verwendet werden.

8.5 Funktionsbausteine Verschiedenes

SERIAL OUTPUT: Serielle Übertragung von Statussignalen

Der Funktionsbaustein SERIAL OUTPUT überträgt den Status von maximal 8 Eingängen (*In1…In8*) auf den Ausgang *Output* und bringt sie in ein serielles Format.

Funktionsprinzip

Die Serial-Output-Funktion codiert und überträgt den Status aller angeschlossenen Eingänge mit 2 unterschiedlichen Methoden auf den Ausgang *Output*:

Asynchrone Methode der Codierung:

- 1. Signalpegel vor Beginn (Ruhe-Pegel): HIGH;
- 2. Start-Bit (Beginn der Datenübertragung): 1 Bit LOW;
- 3. Übertragung von n Bit mit dem Status der angeschlossenen Eingänge kodiert mit der Methode *Manchester*.
 - Status 0: Signalbeginn in der Mitte des Bits
 - Status 1: Schlussgrenze Signal in der Mitte des Bits
- 4. Zwischenzeichen auf 1 (HIGH), um die Synchronisierung eines externen Geräts zu ermöglichen.

Bei der Asynchronen Methode ist daher der Ausgang Clock nicht vorhanden.

Synchrone Methode der Serialisierung:

- 1. Der Ausgang und Clock im Ruhezustand sind LOW;
- 2. Übertragung von *n* Bits mit Status der Eingänge unter Verwendung von *Output* als Daten, CLOCK als Zeitenbasis;
- 3. Zwischencharakter auf LOW, um die Synchronisierung des externen Geräts zu ermöglichen

Parameter

Anzahl der Eingänge: Definiert die Anzahl der Eingänge des Funktionsbausteins 2÷8 (asynchron) bzw. 3÷8 (synchron).

Bit-Dauer (ms): In dieses Feld den Wert eingeben, der der Dauer jedes einzelnen Bits entspricht (Eingang n), aus dem sich die Impulsreihe zusammensetzt, die die Übertragung bildet.

- 40 ms ÷ 200 ms (Step 10 ms)
- 250 ms ÷ 0,95 s (Step 50 ms)

Dauer Zwischenzeichen (ms): In dieses Feld die Zeit eingeben, die zwischen der Übertragung der Impulsreihe und der nachfolgenden verstreichen muss.

- 100 ms ÷ 2,5 s (Step 100 ms)
- 3 s ÷ 6 s (Step 500 ms)

NETWORK (Globaler Not-Halt)

Der Funktionsbaustein NETWORK ermöglicht die Verteilung der Stop- und Reset-Befehle über ein einfaches lokales Netz. Über **Network_In** und **Network_Out** werden die *START-, STOP- UND RUN-Signale unter den verschiedenen Knoten ausgetauscht.*

Funktionsprinzip

Diese Funktion ermöglicht eine einfache Verteilung der Stopp- und Wiederherstellungsbefehle eines lokalen eloProg-Netzes.

Beim Funktionsbaustein NETWORK ist immer:

- 1. der Eingang **Network_In** an einen einzelnen bzw. doppelten Eingang angeschlossen und muss an den Ausgang **Network_Out** des Moduls angeschlossen sein, das dem lokalen Netz vorausgeht.
- 2. der Ausgang **Network_Out** an ein STATUS-Signal bzw. einen OSSD-Ausgang angeschlossen und muss an den Eingang **Network_In** des Moduls angeschlossen sein, das im lokalen Netz folgt.
- 3. Der Eingang **Stop_In** wird an den Ausgang eines Not-Halt-Gerätes (Emergency-Stop), der Eingang **Reset_In** an den zugehörigen Start-(Reset-)Taster angeschlossen (via Eingangsbaustein Sensor oder Switch).
- 4. Der Eingang **In** kann frei im Plan angeschlossen werden (z.B. Funktionsbausteine oder Ergebnisse logischer Kombinationen).
- 5. Der Ausgang **Output** kann frei im Plan angeschlossen werden. **Output** ist 1 (HIGH), wenn der Eingang IN1 (HIGH) ist und der Funktionsbaustein neu gestartet wird.

Parameter

Network Reset aktivieren: Bei Auswahl ermöglicht dies den Reset des Funktionsbausteins von Seiten des verteilten Netzes. Erfolgt die Aktivierung nicht, kann jeder Reset des Funktionsbausteins nur über den lokalen Eingang **Reset_In** erfolgen.

Aktivierung Error Out: Bei Auswahl wird das Statussignal Error_Out aktiviert.

Warnung

Die Start-Taste muss sich außerhalb des Gefahrenbereiches befinden und darf aus diesem heraus nicht erreichbar sein. Außerdem muss vom Ort der Anbringung aus der gesamte Gefahrenbereich einsehbar sein.

Hinweis

Die maximale Anzahl der Module MASTER netzwerkfähig ist 10.

Bedingung 1: Zustandbeschreibung Signale Anwendungsbeispiel 1

Mit Bezug auf Fig. 8-37 und Fig. 8-39 tritt beim Einschalten folgendes ein:

- 1. Die Ausgänge **Net_out** sämtlicher sich im Netzwerk befindlicher Knoten befinden sich auf LOW.
- 2. Der am Eingang **Stop_In** (NETWORK) angeschlossene Not-Halt-(Emergency Stop-)Taster (in Grundstellung) wirkt über **Net_out** auf alle Knoten im Netzwerk (Globaler Not-Halt).
- 3. Beim Betätigen des Reset-Tasters an einem der Knoten wird das Start-Signal im Netzwerk verteilt, sämtliche NETWORK-Funktionsbausteine (485EPB-Module) werden dadurch aktiviert.
- 4. Unter der Voraussetzung, dass sämtliche Not-Halt-Taster im Netzwerk sich in Grundstellung befinden und die Eingänge In (NETWORK) sich im Zustand HIGH befinden, werden die Netzwerk-Ausgänge Net_out aller angeschlossener Knoten HIGH.

5. Das RUN-Signal (rot-gestrichelte Pfeile) verbreitet sich über das Netz der 4 vorliegenden Knoten (485EPB-Module)

Bedingung 2: Zustandbeschreibung Signale Anwendungsbeispiel 2

Mit Bezug auf *Fig.* 8-37 und *Fig.* 8-39 tritt, wenn der Not-Halt in einem der 4 Knoten betätigt wird, folgendes ein:

- 1. Der Ausgang **Net_out** des betroffenen Knotens befindet sich auf LOW.
- 2. Das Stopp-Signal wird über die Leitung Net_out im Netzwerk verbreitet.
- 3. Der nachfolgende Knoten erhält den Stopp-Befehl und deaktiviert seinen Ausgang.
- 4. Der Stopp-Befehl wird via Net_In / Net_out an alle Knoten verteilt.
- 5. Als Endergebnis sind sämtliche Ausgänge Net_out im Netzwerk auf LOW.
- 6. Wird der gedrückte Not-Halt-Taster wieder in die Grundstellung versetzt und ist die Option "Network Reset aktivieren" angewählt, können alle Knoten mit einem einzigen Start-(Reset-) Signal wieder gestartet werden. Das System benötigt ca. 4s, um alle Ausgänge des Netzwerkes wieder herzustellen.

Wenn der Not-Halt in der Grundstellung wieder hergestellt wurde, können alle Knoten über die Verbreitung des Start-(Reset-) Signals.

Hinweis

Einen lokalen Reset des Moduls ausführen, welches zur Netzwerkunterbrechung geführt hat, um den lokalen Sicherheitsausgang wieder herzustellen.

Reaktionszeit

Die maximale Reaktionszeit des Netzwerks ab dem Betätigen des Not-Halts berechnet sich wie folgt:

```
t<sub>r</sub> = [(212 ms x n°Master)-260ms]
```


Hinweis

Die maximale Anzahl der angeschlossenen Master darf nicht mehr als 10 betragen.

Beispiel 4 Knoten-Netzwerk:

Fig. 8-34 Not-Halt - 4-Knoten-Netzwerk

Bedingung 3: Zustandsbeschreibung Signale Anwendungsbeispiel 3

Mit Bezug auf *Fig.* 8-35 und *Fig.* 8-36 tritt bei LOW-Signal am Eingang In (von Ausgang Schutzeinrichtung) folgendes ein:

- 1. Der lokale Ausgang Output (NETWORK) befindet sich auf LOW
- 2. Das RUN-Signal verbreitet sich weiterhin über die Leitungen Network_Out
- 3. Die anderen NETWORK Knoten (485EPB-Module) ändern den Zustand ihrer Ausgänge nicht
- Das Betätigen des lokalen Resets ist erforderlich, was mit dem Blinken der entsprechenden Eingangs-LED IN (im Beispiel LED IN 3) angezeigt wird. Gestartet werden kann der Knoten durch den lokalen Reset.

		SIGNALE DER FUNKTIONSBAUSTEINE NETWORK					
		NETWORK_IN		NETWORK_OUT (OSSD)	NETWORK_OUT (STATUS)	RESET_IN	
	LED	FAIL EXT	IN (1)	OSSD (2)	STATUS	IN (3)	
	STOP	OFF	OFF	ROT	OFF	OFF	
ZUSTAND	CLEAR	OFF	blinkend	ROT/GRÜN (BLINKEND)	BLINKEND	BLINKEND	
ZUSTAND	RUN	OFF	ON	GRÜN	ON	ON	
	FAIL	ON	blinkend	-	-	-	
(1) Entenrochand	dem Eingang	an dem Netw	ork. In angesch	losson ist			

(1) Entsprechend dem Eingang, an dem Network_In angeschlossen ist

(2) Entsprechend dem Ausgang, an dem Network_Out angeschlossen ist

(3) Entsprechend dem Eingang, an dem Reset_In angeschlossen ist

Hinweis

Network_IN und **Network_OUT** können nur an den Pins des Basismoduls 485EPB verwendet werden.

Fig. 8-35 Verwendungsbeispiel des Funktionsbausteins **NETWORK** (Kategorie 2)

Fig. 8-36 Verwendungsbeispiel des Funktionsbausteins **NETWORK** (Kategorie 4)

Anwendungsbeispiel in Kategorie 2 (DIN EN ISO 13849-1)

Datenfluss Netzwerk

Netzwerkparameter für die Berechnung des PL

Architektur	Kat.2
Diagnosedeckungsgrad	DC = 90%
Zuverlässigkeit Module EPA	MTTFd = 437 (Jahre)

Anwendungsbeispiel in Kategorie 4 (DIN EN ISO 13849-1)

Fig. 8-39 Anwendungsbeispiel in Kategorie 4 (DIN EN ISO 13849-1)

Netzwerkparameter für die Berechnung des PL

Architektur	Kat.4
Diagnosedeckungsgrad	DC = 99%
PFHd Module EPA	PFHd = 6,86E-09 (Stunden)

Fig. 8-40 Anwendungsbeispiel in Kategorie 4 / LOGIK-Netz

INTERPAGE IN/OUT

Wenn das Schaltbild sehr komplex ist, und eine Verbindung zwischen zwei sehr weit auseinanderliegenden Objekten erforderlich ist, kann die Komponente "Interpage" verwenden werden.

(Linke Seite des Plans)

(Rechte	Seite des Plans)
	Eigenschaft Interpage in Verbindungsname

Um eine Verbindung herzustellen, müssen die zusammengehörenden Elemente "Interpage out" und "Interpage in" die gleiche Bezeichnung haben.

RESET eloProg-System (Softwarereset)

Dieser Funktionsbaustein erzeugt einen Systemreset, wenn auf dem entsprechenden Eingang ein doppelter OFF-ON-OFF-Übergang mit einer Dauer von weniger als 5 s vorliegt.

Hinweis

- Sollte die Zeit > 5 s betragen, wird kein RESET ausgelöst.
- Kann verwendet werden, um Störungen zurückzusetzen, ohne die Systemversorgung unterbrechen zu müssen (Hardware-Reset nicht erforderlich).

TERMINATOR

Dieser Funktionsbaustein kann nur an den Ausgang eines Eingangsbausteins angeschlossen werden, um das Einfügen des Eingangsbausteins ohne Anschluss in der Konfiguration (im eloProg Safety Designer) zu ermöglichen.

Der an den Funktionsbaustein TERMINATOR angeschlossene Eingang erscheint im Mapping der Eingänge und sein Status wird an den Bus übertragen.

8.5.1 Sonderanwendungen

Verzögerter Ausgang mit manuellem Betrieb

Sollte es erforderlich sein, über 2 Ausgänge zu verfügen, von denen der zweite verzögert ist (im *Manuellen* Betrieb), den folgenden Plan verwenden:

Fig. 8-41 Doppelter Ausgang, von dem der zweite im manuellen Betrieb verzögert wird

Hinweis

Bei Verwendung des Timer-Funktionsbausteins VERZÖGERUNG (siehe Kap. DELAY: Ein-/Ausschaltverzögerung mit Kompensation Signalunterbrechung auf Seite 8-88) sollte die Anwendung wie folgt ausgelegt werden:

– Die beiden Ausgänge müssen mit automatischem RESET TYPE programmiert werden. Außerdem muss der Funktionsbaustein USER RESTART MANUAL verwendet werden.

SIMULATOR-Merkmale

Hinweis

- Dieser Simulator wurde als reine Planungshilfe bei der Auslegung der Sicherheitsfunktion konzipiert.
- Das Ergebnis der Simulation darf nicht als Bestätigung für die Eignung des Projekts betrachtet werden.
- Das Ergebnis für die Sicherheitsfunktion muss stets, sowohl unter dem Gesichtspunkt der Hardware als auch dem der Software, in einer realen Situation und nach den geltenden Bestimmungen bestätigt werden, wie z.B. ISO/EN 13849-2: Validierung oder IEC/ EN 62061: Kapitel 8 - Validierung eines sicherheitsbezogenen elektrischen Steuersystems.
- Die sicherheitsrelevanten Parameter der eloProg-Konfiguration sind im Projektbericht zu finden.

In der oberen Symbolleiste gibt es zwei neue (grüne) Symbole (485EPB ab Firmware Version 3.2):

earbeiten	Kommunikation	Simulation	Optionen	?										
1	8 🖬 🖬 🛎	a 🕅 🖽 🕇	1 ***	-	5 6	0	1	0 4	÷	×	D	R	0	elobau GmbH & Co. KG
	- Î													

Fig. 8-42 eloProg Safety Designer Oberfläche

Diese Symbole beziehen sich auf die neue Simulatorfunktion.

Das erste Symbol **b**ezeichnet die "Plansimulation". Es aktiviert den Plansimulator, der statische oder dynamische Simulationen ermöglicht. Eingänge können auf HIGH oder LOW forciert werden, indem der Ausgang *Output* des entsprechenden Eingangsbausteins durch einen Klick auf die Aktivierungsschaltfläche (im Baustein unten rechts) auf HIGH (grün) oder LOW (rot) gesetzt wird (siehe *Fig. 8-43*).

Fig. 8-43 Eingangsbausteine im Plansimulator auf HIGH oder LOW setzen

Das zweite Symbol startet die "Verwaltung grafische Simulation". Es aktiviert den über die Datei der Stimuli gesteuerten Simulator, der auch das Einblenden der gewünschten Spuren in einem eigenen Graphen vorsieht.

Hinweis

Der Simulationsmodus und die entsprechenden Symbole sind nur verfügbar, wenn der eloProg Safety Designer nicht mit dem Basismodul verbunden ist.

Plansimulation

Durch Anklicken des Symbols 🎦 startet die Plansimulation.

Die Plansimulation ermöglicht das Überprüfen/Steuern des Signalverlaufs im Ausgang der verschiedenen Funktionsbausteine in Echtzeit, d. h., während der Simulation selbst. Der Benutzer kann frei wählen, welche Ausgänge der Funktionsbausteine gesteuert werden sollen und die Reaktion der verschiedenen Elemente der schematischen Darstellung anhand der Farbe der unterschiedlichen Leitungen überprüfen.

Wie bei der Monitor-Funktion gibt auch in diesem Fall die Farbe der Leitung (oder der Taste des Eingangsbausteins) den Status des Signals an: Grün bedeutet HIGH, Rot bedeutet LOW.

Mit der "Plansimulation" erscheinen einige neue Tasten in der Symbolleiste. Diese Tasten ermöglichen die Steuerung der Simulation, da diese ihren Start (Taste "Play"), ihr Stoppen (Taste "Stop"), die Step-by-step-Ausführung (Taste "PlayStep") oder den Reset (Taste "Reset") ermöglichen. Der Reset der Simulation stellt die Zeit Time auf den Wert 0 ms zurück.

Beim Starten der Simulation durch Betätigen der Taste "Play" kann der Zeitverlauf neben dem Wort "Time" beobachtet werden. Die Zeit verstreicht nach der Zeiteinheit "Step" multipliziert mit dem vom Benutzer gewählten Faktor "KT".

Fig. 8-44 Plansimulation

Durch Anklicken der Taste unten rechts auf jedem Eingangsbaustein (siehe *Fig. 8-43*) kann der jeweilige Ausgang manipuliert werden (auch wenn die Simulation nicht im Gang ist, d.h. wenn die Zeit nicht läuft: in diesem Fall ist die Simulation "statisch"). Wechselt die Taste nach dem Anklicken auf Rot, bedeutet dies, dass der Ausgang LOW ist. Wechselt sie auf Grün, ist der Ausgang HIGH.

In einigen Funktionsbausteinen, wie z.B. "Geschwindigkeitssteuerung" oder "lock_feedback", erscheint die Taste in Grau. Dies weist darauf hin, dass die Eingabe des Werts manuell über ein entsprechendes Pop-up-Fenster erfolgt und die Art des einzugebenden Werts je nach Art des Funktionsbausteins wechselt (z.B. muss in einen Funktionsbaustein der "Geschwindigkeitssteuerung" ein Frequenzwert eingegeben werden).

Fig. 8-45 Tasten zum Aktivieren der Blockausgänge

Frequenz [Hz]	
[Nummer Format: xx.y]	

Fig. 8-46 *Beispiel Pop-up-Fenster zur Frequenzwerteingabe des Blocks "Geschwindigkeitssteuerung" (spezifischer Fall)*

Verwaltung Grafische Simulation

Durch Anklicken des Symbols 🥌 startet die grafische Simulation.

Die grafische Simulation gestattet das Einblenden des zeitlichen Verlaufs der Signale in grafischer Form. Zuvor wird mit der Funktion *Template Stimuli* eine Textdatei erzeugt, welche anschließend mit einem Texteditor (Notepad, MS Editor, etc.) bearbeitet und mit den Zeit- und Status-Werten für die Eingänge (zur grafischen Darstellung der Signalverläufe) gefüllt werden muss.

Die Simulation der Signale erfolgt in Abhängigkeit der Werte aus dieser Textdatei.

Nach Abschluss der Simulation erscheint automatisch ein Graph wie der nachstehend abgebildete. Aus dem Graphen können die angezeigten Spuren ausgedruckt (Taste "Druck"), die Ergebnisse zum erneuten Laden gespeichert (Taste "Speichern") und es kann das Einblenden weiterer Spuren ausgewählt werden (Taste "Sichtbarkeit ändern"). Die Namen der Spuren entsprechen der Beschreibung der Funktionsbausteine.

Durch Anklicken der Schließen-Taste (Taste "X" oben rechts) wird die Umgebung der grafischen Simulation verlassen.

Fig. 8-47 Beispiel Ergebnis der grafischen Simulation

Zum Ausführen der Simulation sind folgende Schritte erforderlich:

- 1. Erstellen einer Stimuli-Datei mit *Template Stimuli* und Speichern.
- 2. Bearbeiten der Datei in einem externen Editor: Erstellen der Zeit- und Status-Werte.
- 3. Laden und Starten der Simulation mit Simulation mit Stimuli.

Nach dem Anklicken des Symbols 🔍 erscheint folgende Ansicht:

👖 Ve	rwaltung grafische Simulation 🗵
1	Simulation mit Stimuli
2	Template Stimuli
3	Simulation laden
4	Sichtbarkeit Spuren

Fig. 8-48 Auswahlmenü für Betriebsart Grafische Simulation

1. Simulation mit Stimuli:

Die editierte Template-Datei kann mit dieser Funktion geladen werden (nicht-editierte Dateien erzeugen Fehlermeldungen), die Simulation startet automatisch. Am Ende der Simulation wird ein Graph mit den sich ergebenden Signalen eingeblendet (siehe *Fig. 8-54*). Die Simulation (der Graph) lässt sich anschließend speichern.

2. Template Stimuli:

Erzeugt eine Template-Datei mit dem Namen der Signale (entsprechend der schematischen Darstellung) und öffnet das Menü zum Speichern der Datei. Im Anschluss muss die Datei in einem externen Texteditor (Notepad, MS Editor, etc.) geöffnet und bearbeitet werden (siehe *Fig. 8-49* und *Fig. 8-50*).

3. Simulation laden:

Wenn eine erzeugte Simulation (Signal-Graph) gespeichert wurde, kann sie mit dieser Funktion wieder geladen werden.

4. Sichtbarkeit Spuren:

Die im Signal-Graphen sichtbaren Signale (Spuren) sind in diesem Menü wählbar.

Fig. 8-49 Ansicht Template-Datei

Fig. 8-50 Template-Datei editiert

Fig. 8-51 Sichtbarkeit der Spuren

Hinweis

Dargestellt sind links die Spuren, die zum Graphen hinzugefügt werden können und rechts die Spuren, die momentan eingeblendet werden und aus dem Graphen gelöscht werden können.

Anwendungsbeispiel der grafischen Simulation

Das nachfolgende Beispiel bezieht sich auf eine Sicherheitszuhaltung mit Stillstandswächter. Die Schutztür wird per Taster angefordert und kann nur geöffnet werden, wenn die Messeinrichtung am Stillstandswächter den Stillstand des Motors erkennt und kein Fehler am SSW anliegt.

Falls der Funktionsbaustein GUARD LOCK nicht-plausible Signale detektiert, oder sich ein Fehler am SSW ergibt, schaltet der Sicherheitskreis sofort ab. Die Freigabe der Schutztür erfolgt 3 s nach gültiger Anforderung.

Schematische Darstellung

In der schematischen Darstellung sind links die Eingangselemente dargestellt: die Sicherheitszuhaltung durch das Eingangselement LOCK FEEDBACK (Input-Block 2), die Anforderungstaste durch das Element SWITCH (Input-Block 1) und der Stillstandswächter durch das Element STAND STILL (Input-Block 3).

Die Ausgänge dieser Elemente werden zu den Eingängen des Funktionsbausteins GUARD LOCK geführt. Der Sicherheitskreis (OSSD-Ausgänge 1A und 1B) startet automatisch, wenn dessen EDM-Eingang FBK_RST1 und der Ausgang *Output* von GUARD LOCK sich im Zustand HIGH befinden und kein Fehler am Ausgang Error des Eingangsbausteins STAND STILL anliegt.

Wird ein HIGH-Signal am Eingang *UnLock_cmd* (GUARD LOCK) erkannt (Ausgang des Logik-Elementes *And Op1* ist HIGH), wird der Sicherheitskreis sofort auf LOW gesetzt, die Magnetspule zum Entsperren der Zuhaltung (Ausgang LockOut) nach 3s mit HIGH angesteuert.

Fig. 8-52 Schematische Darstellung

Stimuli-Datei

Die editierte Template-Datei der Simulation (Stimuli) steuert die Signallaufzeiten und deren Zustände. Die Schutztür (Input 1) startet mit LOW-Level und wird nach 1s auf HIGH gesetzt (Zeile 1000:1) und nach 2s wieder auf LOW (2000:0).

Die zeitlichen Abläufe sind am besten im Graphen der Simulation zu erkennen (siehe Fig. 8-54).

```
🔚 GuardLock_3_edited.sti 🗵
```

```
1 // Stimulus Template edited
3
   //Sim 0:EndTime:Step (time unit ms)
   Sim 0:10000:100
4
5
6 // Switch: Taster zum Anfordern der Schutztür
7 Input1
8
   0:0
9
   1000:1
10 9000:0
11
   // Lock Feedback: Zuhaltung, Sicherheitskontakte mit Positionsüberwachung des Sperrmittels
12
   // Write a value among [Default|Wrong|Fixed0|Fixed1]
13
   Input2
14
15 Default
16
17 // Stand Still: Stillstandswächter, Sicherheitsausgang "Zero" und "Error" müssen eingebunden werden
18 // Only Integer numbers!!
19
   SpeedInput3
   //Frequenz Nullgeschwindigkeit 17,067 Hz
21 0:8 Hz
22 2000: 15 Hz
23 8000: 30 Hz
24
25
   // Störmeldeausgang ERROR des SSW
26 // When Error is 1, Input is forced to 0
27 Error3
28 0:0
   8000:1
29
30 9000:0
31
32 // OSSD
33 Fbk rst1
34 0:1
35
```

Fig. 8-53 Template Stimuli

Ergebnis der Simulation

Im Graphen werden die Signalverläufe der Simulation dargestellt.

Der zeitliche Ablauf ist wie folgt:

- Oms (Start): Die Tür ist zu und verriegelt (gesperrt), Tür wird nicht angefordert, Stillstandswächter. Zero (Stillstandssignal) ist HIGH (Drehzahl innerhalb Geschwindigkeitsgrenze), Op1 ist LOW, Op2 (GUARD LOCK Output) ist HIGH, der EDM/Start-Eingang FBK_RST ist HIGH, der Sicherheitskreis ist ebenfalls HIGH (OSSDs gestartet)
- 1000ms: Die Tür wird angefordert (Signal *Tür anfordern* = HIGH), da der Ausgang *Zero* (Stillstandswächter) noch ein HIGH liefert und der Fehlerausgang ERROR vom SSW keinen Fehler anzeigt (Ausgang LOW), kann die Tür angefordert werden (Op1 wird HIGH). Der Sicherheitskreis geht sofort auf LOW, aufgrund der eingestellten Entriegelungs-Verzögerung (UnLock-Zeit) von 3s bleibt die Tür zunächst gesperrt.
- 4000ms: Nach Ablauf der Entriegelungs-Verzögerung von 3s wird der Ausgang *LockOut* von Op2 (GUARD LOCK) HIGH, dadurch wird die Magnetspule zum Entriegeln bestromt (Status-Ausgang "Magnetspule" = HIGH).
- 8000ms: Nach 8s erkennt der Stillstandswächter einen Fehler (Signal "Error3" = HIGH), Op1 wechselt auf LOW (Tür anfordern nicht mehr möglich), *Op2.LockOut* (Entsperrsignal für Magnetspule) geht ebenfalls auf LOW, die Tür wird (durch Federkraft) mechanisch verriegelt, der Sicherheitskreis bleibt LOW, die OSSDs können nicht starten.
- 9000ms: Nach 9s ist der Fehler behoben ("Error3" wieder LOW). Nach einer reaktionsbedingten Verzugszeit von ca. 600ms lieferen die Sicherheitskontakte der Zuhaltung wieder HIGH (Signal *Tür zu und verriegelt*), GUARD LOCK wechselt auf HIGH (Signal *Op2.LockOut*), der Sicherheitskreis startet, die OSSD-Ausgänge schalten ein.

Fig. 8-54 Ergebnis der Simulation

8.5.2 eloProg-Fehlercodes

Im Fall von Funktionsstörungen ist das eloProg System in der Lage, den Fehlercode an die Software eloProg zu übertragen, der dem vom Master 485EPB erfassten Fehler entspricht. Um den Code zu lesen, wie folgt vorgehen:

- Master 485EPB (der den FAIL über LED anzeigt) mit dem USB-Kabel an den PC anschließen;
- Software eloProg starten; es erscheint ein Fenster mit dem erfassten Fehlercode.

CODE	FAIL	LÖSUNG
19D	Die beiden Mikro-Controller sehen nicht die gleiche HW- / SW-Konfiguration	Die korrekte Verbindung von 485EPB und der Erweiterungsmodule mit den MSC-Verbindern kontrollieren. Eventuell die Steckverbinder ersetzen
66D	Es sind 2 oder mehrere gleiche Erweiterungsmodule mit derselben Knotenanzahl vorhanden	Die Anschlüsse der PINs 2 und 3 der Erweiterungs- module kontrollieren
68D	Die maximale Anzahl Erweiterungsmodule wurde überschritten	Die überzähligen Module abtrennen (max. 14)
70D	Ein oder mehrere Module haben eine Änderung der Knotenanzahl erfasst	Die Anschlüsse der PINs 2 und 3 der Erweiterungs- module kontrollieren
73D	Ein Slave-Modul hat einen externen Fehler erfasst	Den Fehlercode des jeweiligen Moduls wegen weiterer Informationen kontrollieren
96D ÷ 101D	Fehler in Bezug auf den 350EPS-Speicher	Den 350EPS-Speicher ersetzen
137D	Von einem 485EPR04S00B- oder 485EPR04S08B-Modul - EDM-Fehler in Bezug auf das in Kategorie 4 verwendete Paar RELAIS1 und 2	Den Anschluss des Feedback der externen Schütze kontrollieren
147D	Von einem 485EPR04S00B- oder 485EPR04S08B-Modul - EDM-Fehler in Bezug auf das in Kategorie 4 verwendete Paar RELAIS2 und 3	Den Anschluss des Feedback der externen Schütze kontrollieren
157D	Von einem 485EPR04S00B- oder 485EPR04S08B-Modul - EDM-Fehler in Bezug auf das in Kategorie 4 verwendete Paar RELAIS3 und 4	Den Anschluss des Feedback der externen Schütze kontrollieren
131D	Von einem Modul 485EPS2, 485EPS1 oder 485EPS2N - Anschlussunterbrechung Proxi 1 oder 2 erfasst	Die Anschlüsse der Proxy kontrollieren
132D	Von einem Modul 485EPS2 - Anschlussunterbrechung Encoder 1 und 2 erfasst	Die Anschlüsse der Encoder kontrollieren
133D (Proxi1) 140D (Proxi 2)	Von einem Modul 485EPB - eine Überfrequenzmessung auf Proximity-Eingang erfasst	Die Eingangsfrequenz muss ≤ 5 kHz betragen
136D (Encoder1) 143D (Encoder2)	Von einem Modul 485EPB - Encoder-Eingangssignale außerhalb des Standards erfasst (Duty cycle, Phasenverschiebung)	Der Duty Cycle muss folgende Werte aufweisen: 50% \pm 33% der Periode (HTL, TTL). Die Phasenverschiebung muss folgende Werte aufweisen: 90° \pm 45° (HTL, TTL) (nicht auf SIN/ COS anwendbar)
138D (Encoder1) 145D (Encoder2)	Von einem Modul 485EPB - eine Überfrequenzsmessung auf Encoder-Eingang erfasst	Die Eingangsfrequenz muss folgendes betragen: ≤ 500 kHz (TTL, SIN/COS); ≤ 300 kHz (HTL)
142D	Von einem Modul 485EPS2 oder 485EPS1 - Anschlussunterbrechung Encoder 1 erfasst	Die Anschlüsse von Encoder1 kontrollieren
144D	Von einem Modul 485EPS2, 485EPS1 oder 485EPS2N - Anschlussunterbrechung Proxi 1 erfasst	Die Anschlüsse der Proxy kontrollieren
152D	von einem Modul 485EPS2 - Anschlussunterbrechung Encoder 2 erfasst	Die Anschlüsse von Encoder2 kontrollieren
154D	Von einem Modul 485EPS2, 485EPS1 oder 485EPS2N - Anschlussunterbrechung Proxi 2 erfasst	Die Anschlüsse des Proxy2 kontrollieren
194D 197D 198D 199D 201D 202D 203D 205D	Fehler in Bezug auf den statischen Ausgang OSSD1	Die Anschlüsse in Bezug auf den OSSD1 des Moduls kontrollieren, das den Fehler ergeben hat

In Tab. 8-5 sind die möglichen erfassbaren Fehler und ihre Lösung aufgeführt.

elobau 🕑

CODE	FAIL	LÖSUNG
208D 211D 212D 213D 215D 216D 217D 219D	Fehler in Bezug auf den statischen Ausgang OSSD2	Die Anschlüsse in Bezug auf den OSSD2 des Moduls kontrollieren, das den Fehler ergeben hat
222D 225D 226D 227D 229D 230D 232D 233D	Fehler in Bezug auf den statischen Ausgang OSSD3	Die Anschlüsse in Bezug auf den OSSD3 des Moduls kontrollieren, das den Fehler ergeben hat
236D 239D 240D 241D 243D 244D 245D 247D	Fehler in Bezug auf den statischen Ausgang OSSD4	Die Anschlüsse in Bezug auf den OSSD4 des Moduls kontrollieren, das den Fehler ergeben hat
1D ÷ 31D	Fehler Microcontroller	NEUSTART des Systems durchführen. Bleibt der Fehler bestehen, das Modul ersetzen.
32D ÷ 63D	Fehler Hauptplatine	
64D ÷ 95D	Kommunikationsfehler zwischen den Modulen	
96D ÷ 127D	Fehler Speicherkarte 350EPS	MCM-Speicher ersetzen
128D ÷ 138D	Error Module EPR04 RELAIS 1	
139D ÷ 148D	Error Module EPR04 RELAIS 2	NEUSTART des Systems durchführen. Bleibt der Fehler bestehen, das Modul ersetzen.
149D ÷ 158D	Error Module EPR04 RELAIS 3	
159D ÷ 168D	Error Module EPR04 RELAIS 4	
169D ÷ 191D	Fehler Module 485EPS - Encoder-Eingang	NEUSTART des Systems durchführen. Bleibt der Fehler bestehen, das Modul ersetzen.
192D ÷ 205D	Fehler OSSD 1	
206D ÷ 219D	Fehler OSSD 2	
220D ÷ 233D	Fehler OSSD 3	
234D ÷ 247D	Fehler OSSD 4	

Tab. 8-5 Mögliche Fehler

Hinweis

Alle anderen Codes beziehen sich auf interne Fehler oder Funktionsstörungen. Defekte Module sind zu ersetzen.

elobau 🕑

9 ZUBEHÖR UND ERSATZTEILE

MODELL	BESCHREIBUNG
485EPB	eloProg Basismodul 8 Eingänge / 2 Halbleiterausgänge (Paare)
485EPE08A02	eloProg Ein-/Ausgangsmodul 8 Eingänge / 2 Halbleiterausgänge (Paare)
485EPE08	eloProg Eingangsmodul 8-fach
485EPE12	eloProg Eingangsmodul 12-fach
485EPE16	eloProg Eingangsmodul 16-fach
485EPA02	eloProg Ausgangsmodul Halbleiter 2-fach (Paare)
485EPA02S08	eloProg Ausgangsmodul Hochstrom-Halbleiter 4-fach (Single oder Paare)
485EPA04	eloProg Ausgangsmodul Halbleiter 4-fach (Paare)
485EPAS00S08	eloProg Ausgangsmodul 8 Statusausgänge (nicht-sicher)
485EPAS00S16	eloProg Ausgangsmodul 16 Statusausgänge (nicht-sicher)
485EPR02	eloProg Ausgangsmodul Relais 2-fach
485EPR04	eloProg Ausgangsmodul Relais 4-fach
485EPR04S00B	Ausgangsmodul Relais 4-fach / busfähig
485EPR04S08B	Ausgangsmodul Relais 4-fach / 8 Statusausgänge / busfähig
485EPFPD	eloProg Feldbusmodul Profibus DP
485EPFDN	eloProg Feldbusmodul DeviceNet
485EPFCO	eloProg Feldbusmodul CANopen
485EPFEC	eloProg Feldbusmodul EtherCat
485EPFEI	eloProg Feldbusmodul Ethernet IP
485EPFEI2	eloProg Feldbusmodul Ethernet IP 2-fach
485EPFMR	eloProg Feldbusmodul Modbus RTU
485EPFMT	eloProg Feldbusmodul Modbus TCP
485EPFPN	eloProg Feldbusmodul Profinet
485EPFPN2	eloProg Feldbusmodul Profinet 2-fach
485EPFUB	eloProg Universal Serial Bus
485EPT1	eloProg Bustransfermodul (Anfang/Ende)
485EPT2	eloProg Bustransfermodul (Mitte)
485EPS1T	eloProg Drehzahlüberwachungsmodul 1 TTL - Encoder
485EPS1H	eloProg Drehzahlüberwachungsmodul 1 HTL - Encoder
485EPS1S	eloProg Drehzahlüberwachungsmodul 1 sin/cos - Encoder
485EPS2T	eloProg Drehzahlüberwachungsmodul 2 TTL - Encoder
485EPS2H	eloProg Drehzahlüberwachungsmodul 2 HTL - Encoder
485EPS2S	eloProg Drehzahlüberwachungsmodul 2 sin/cos - Encoder
485EPS2N	eloProg Drehzahlüberwachungsmodul 2 Initiatoren
350EPS	eloProg Speicherstick
350EPT	eloProg T-Verteiler
350EPU	eloProg USB-Kabel 3 m lang

Tab. 9-1 Zubehör und Ersatzteile

elobau 🕑

10 EG-KONFORMITÄTSERKLÄRUNG

elobau GmbH & Co. KG Zeppelinstraße 44 D-88299 Leutkirch +49-7561-970-0 / <u>www.elobau.de</u>

EU-Konformitätserklärung

EU- Declaration of Conformity

Hiermit erklären wir, dass das nachfolgend aufgeführte Produkt aufgrund der Konzipierung und Bauart den Sicherheits- und Gesundheitsanforderungen der unten genannten EU-Richtlinien entspricht.

Hereby we officially validate that the below listed component comply with the requirements of the following European Directive because of their design and construction:

Bezeichnung des Bauteils: Name of component:	eloProg
Beschreibung des Bauteils: Description of component:	modulares sicherheitsgerichtetes konfigurierbares System
	modular safety-related configurable system
elobau Artikel-Nr.: elobau item no.:	485 EPB 485 EPE * 485 EPA * 485 EPR * 485 EPT * 485 EPS * 485 EPF *
Einschlägige EU-Richtlinien: Relevant EU-Directives:	Maschinenrichtlinie 2006/42/EG EMV-Richtlinie 2014/30/EU
	Machinery Directive 2006/42/EC EMC Directive 2014/30/EU
Änderungsindex: Modification Index:	В
Leutkirch, den 04.07.2016	Sanchina Pehrs CE-Beauftragte / EC authorized Representative Dokumentation-Bevollmächtigte / Documentation Representative

998H0021K0006

creating **sustainable** solutions

elobau GmbH & Co. KG Zeppelinstraße 44 88299 Leutkirch Internet: www.elobau.com Service-phone eloProg : 0049 (0) 7561/970110 Service-email eloProg : service@elobau.com